3,726 research outputs found

    Parity realization in Vector-like theories from Fermion Bilinears

    Full text link
    We reconsider in this paper the old aim of trying to understand if the observed realization of discrete symmetries as Parity or CP in the QCD vacuum can be satisfied from first principles. We show how under the appropriate assumptions implicitely done by Vafa and Witten in their old paper on parity realization in vector-like theories, all parity and CP odd operators constructed from fermion bilinears of the form ψˉO~ψ\bar\psi\tilde O\psi should take a vanishing vacuum expectation value in a vector-like theory with N degenerate flavours (N>1). In our analysis the Vafa-Witten theorem on the impossibility to break spontaneously the flavour symmetry in a vector-like theory plays a fundamental role.Comment: 12 pages, no figures To be published in JHE

    Quantum magnetism with multicomponent polar molecules in an optical lattice

    Full text link
    We consider bosonic dipolar molecules in an optical lattice prepared in a mixture of different rotational states. The 1/r^3 interaction between molecules for this system is produced by exchanging a quantum of angular momentum between two molecules. We show that the Mott states of such systems have a large variety of non-trivial spin orderings including a state with ordering wave vector that can be changed by tilting the lattice. As the Mott insulating phase is melted, we also describe several exotic superfluid phases that will occur

    The impact of QCD plasma instabilities on bottom-up thermalization

    Full text link
    QCD plasma instabilities, caused by an anisotropic momentum distributions of the particles in the plasma, are likely to play an important role in thermalization in heavy ion collisions. We consider plasmas with two different components of particles, one strongly anisotropic and one isotropic or nearly isotropic. The isotropic component does not eliminate instabilities but it decreases their growth rates. We investigate the impact of plasma instabilities on the first stage of the ``bottom-up'' thermalization scenario in which such a two-component plasma emerges, and find that even in the case of non-abelian saturation instabilities qualitatively change the bottom-up picture.Comment: 12 pages, latex, one typo corrected, several minor changes in the abstract and the text, to appear in JHE

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    Tracing CP-violation in Lepton Flavor Violating Muon Decays

    Get PDF
    Although the Lepton Flavor Violating (LFV) decay μ+e+γ\mu^+\to e^+ \gamma is forbidden in the Standard Model (SM), it can take place within various theories beyond the SM. If the branching ratio of this decay saturates its present bound [{\it i.e.,} Br(μ+e+γ)1011(\mu^+ \to e^+\gamma)\sim 10^{-11}], the forthcoming experiments can measure the branching ratio with high precision and consequently yield information on the sources of LFV. In this letter, we show that for polarized μ+\mu^+, by studying the angular distribution of the transversely polarized positron and linearly polarized photon we can derive information on the CP-violating sources beyond those in the SM. We also study the angular distribution of the final particles in the decay μ+e1+ee2+\mu^+\to e^+_1 e^- e^+_2 where e1+e^+_1 is defined to be the more energetic positron. We show that transversely polarized e1+e_1^+ can provide information on a certain combination of the CP-violating phases of the underlying theory which would be lost by averaging over the spin of e1+e^+_1.Comment: 6 pages, 2 figure

    Primordial Entropy Production and Lambda-driven Inflation from Quantum Einstein Gravity

    Full text link
    We review recent work on renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values. In particular we argue that QEG effects can account for the entire entropy of the present Universe in the massless sector and give rise to a phase of inflationary expansion. This phase is a pure quantum effect and requires no classical inflaton field.Comment: 12 pages, 4 figures, IGCG-07 Pun

    Soliton localization in Bose-Einstein condensates with time-dependent harmonic potential and scattering length

    Full text link
    We derive exact solitonic solutions of a class of Gross-Pitaevskii equations with time-dependent harmonic trapping potential and interatomic interaction. We find families of exact single-solitonic, multi-solitonic, and solitary wave solutions. We show that, with the special case of an oscillating trapping potential and interatomic interaction, a soliton can be localized indefinitely at an arbitrary position. The localization is shown to be experimentally possible for sufficiently long time even with only an oscillating trapping potential and a constant interatomic interaction.Comment: 19 pages, 11 figures, accepted for publication in J.Phys.

    S-particles at their naturalness limits

    Full text link
    We draw attention on a particular configuration of supersymmetric particle masses, motivated by naturalness and flavour considerations. All its relevant phenomenological properties for the LHC are described in terms of a few physical parameters, irrespective of the underlying theoretical model. This allows a simple characterization of its main features, useful to define a strategy for its discovery.Comment: 13 pages, 8 figures, added reference

    On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure

    Get PDF
    We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo solution of the Einstein Equations in terms of bars. We find that each multi-pole correspond to the Newtonian potential of a bar with linear density proportional to a Legendre Polynomial. We use this fact to find an integral representation of the γ\gamma function. These integral representations are used in the context of the inverse scattering method to find solutions associated to one or more rotating bodies each one with their own multi-polar structure.Comment: To be published in Classical and Quantum Gravit

    A review of the decoherent histories approach to the arrival time problem in quantum theory

    Full text link
    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
    corecore