441 research outputs found
A study of transport suppression in an undoped AlGaAs/GaAs quantum dot single-electron transistor
We report a study of transport blockade features in a quantum dot
single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We
observe suppression of transport through the ground state of the dot, as well
as negative differential conductance at finite source-drain bias. The
temperature and magnetic field dependence of these features indicate the
couplings between the leads and the quantum dot states are suppressed. We
attribute this to two possible mechanisms: spin effects which determine whether
a particular charge transition is allowed based on the change in total spin,
and the interference effects that arise from coherent tunneling of electrons in
the dot
Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor
Radio frequency reflectometry is demonstrated in a sub-micron undoped
AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive
candidates to study single electron phenomena due to their charge stability and
robust electronic properties after thermal cycling. However these devices
require a large top-gate which is unsuitable for the fast and sensitive radio
frequency reflectometry technique. Here we demonstrate rf reflectometry is
possible in an undoped SET.Comment: Four pages, three figures, one supplementary fil
Global standards of Constitutional law : epistemology and methodology
Just as it led the philosophy of science to gravitate around scientific practice, the abandonment of all foundationalist aspirations has already begun making political philosophy into an attentive observer of the new ways in which constitutional law is practiced. Yet paradoxically, lawyers and legal scholars are not those who understand this the most clearly. Beyond analyzing the jurisprudence that has emerged from the expansion of constitutional justice, and taking into account the development of international and regional law, the ongoing globalization of constitutional law requires comparing the constitutional laws of individual nations. Following Waldron, the product of this new legal science can be considered as ius gentium. This legal science is not as well established as one might like to think. But it can be developed on the grounds of the practice that consists in ascertaining standards. As abstract types of best “practices” (and especially norms) of constitutional law from around the world, these are only a source of law in a substantive, not a formal, sense. They thus belong to what I should like to call a “second order legal positivity.” In this article I will undertake, both at a methodological and an epistemological level, the development of a model for ascertaining global standards of constitutional law
Hybrid architecture for shallow accumulation mode AlGaAs/GaAs heterostructures with epitaxial gates
Accumulation mode devices with epitaxially grown gates have excellent electrical stability due to the absence of dopant impurities and surface states. We overcome typical fabrication issues associated with epitaxially gated structures (e.g., gate leakage and high contact resistance) by using separate gates to control the electron densities in the Ohmic and Hall bar regions. This hybrid gate architecture opens up a way to make ultrastable nanoscale devices where the separation between the surface gates and the 2D electron gas is small. In this work, we demonstrate that the hybrid devices made from the same wafer have reproducible electrical characteristics, with identical mobility and density traces over a large range of 2D densities. In addition, thermal cycling does not influence the measured electrical characteristics. As a demonstration of concept, we have fabricated a hybrid single-electron transistor on a shallow (50 nm) AlGaAs/GaAs heterostructure that shows clear Coulomb blockade oscillations in the low temperature conductance.This project was supported by the Australian Government under the Australia-India Strategic Research Fund and by the Australian Research Council (ARC) DP scheme. A.R.H. acknowledges an ARC Outstanding Researcher Award. Devices were fabricated using the facilities at the NSW Node of the Australian National Fabrication Facility (ANFF). J.R., A.L., and A.D.W. acknowledge support from Mercur Pr-2013-0001, BMBF-Q.com-H 16KIS0109, and DFH/UFA CDFA-05-06.Copyright (2015) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in MacLeod SJ, See AM, Hamilton AR, Farrer I, Ritchie DA, Ritzmann J, Ludwig A, Wieck AD, Applied Physics Letters 106, 012105 (2015) and may be found at http://dx.doi.org/10.1063/1.4905210
Probing the Sensitivity of Electron Wave Interference to Disorder-Induced Scattering in Solid-State Devices
The study of electron motion in semiconductor billiards has elucidated our
understanding of quantum interference and quantum chaos. The central assumption
is that ionized donors generate only minor perturbations to the electron
trajectories, which are determined by scattering from billiard walls. We use
magnetoconductance fluctuations as a probe of the quantum interference and show
that these fluctuations change radically when the scattering landscape is
modified by thermally-induced charge displacement between donor sites. Our
results challenge the accepted understanding of quantum interference effects in
nanostructures.Comment: 8 pages, 5 figures, Submitted to Physical Review
PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection
We provide ingredients and recipes for computing signals of TeV-scale Dark
Matter annihilations and decays in the Galaxy and beyond. For each DM channel,
we present the energy spectra of electrons and positrons, antiprotons,
antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at
production, computed by high-statistics simulations. We estimate the Monte
Carlo uncertainty by comparing the results yielded by the Pythia and Herwig
event generators. We then provide the propagation functions for charged
particles in the Galaxy, for several DM distribution profiles and sets of
propagation parameters. Propagation of electrons and positrons is performed
with an improved semi-analytic method that takes into account
position-dependent energy losses in the Milky Way. Using such propagation
functions, we compute the energy spectra of electrons and positrons,
antiprotons and antideuterons at the location of the Earth. We then present the
gamma ray fluxes, both from prompt emission and from Inverse Compton scattering
in the galactic halo. Finally, we provide the spectra of extragalactic gamma
rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125
higgs boson, computation and discussion of extragalactic spectra corrected,
some other typos fixed; all these corrections and updates are reflected on
the numerical ingredients available at
http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.
Liberal Ideals and Political Feasibility: Guest-Worker Programs as Second-Best Policies
- …
