168 research outputs found
Thiemann transform for gravity with matter fields
The generalised Wick transform discovered by Thiemann provides a
well-established relation between the Euclidean and Lorentzian theories of
general relativity. We extend this Thiemann transform to the Ashtekar
formulation for gravity coupled with spin-1/2 fermions, a non-Abelian
Yang-Mills field, and a scalar field. It is proved that, on functions of the
gravitational and matter phase space variables, the Thiemann transform is
equivalent to the composition of an inverse Wick rotation and a constant
complex scale transformation of all fields. This result holds as well for
functions that depend on the shift vector, the lapse function, and the Lagrange
multipliers of the Yang-Mills and gravitational Gauss constraints, provided
that the Wick rotation is implemented by means of an analytic continuation of
the lapse. In this way, the Thiemann transform is furnished with a geometric
interpretation. Finally, we confirm the expectation that the generator of the
Thiemann transform can be determined just from the spin of the fields and give
a simple explanation for this fact.Comment: LaTeX 2.09, 14 pages, no figure
Symmetric coupling of four spin-1/2 systems
We address the non-binary coupling of identical angular momenta based upon
the representation theory for the symmetric group. A correspondence is pointed
out between the complete set of commuting operators and the
reference-frame-free subsystems. We provide a detailed analysis of the coupling
of three and four spin-1/2 systems and discuss a symmetric coupling of four
spin-1/2 systems.Comment: 20 pages, no figure
Modified Gravity via Spontaneous Symmetry Breaking
We construct effective field theories in which gravity is modified via
spontaneous breaking of local Lorentz invariance. This is a gravitational
analogue of the Higgs mechanism. These theories possess additional graviton
modes and modified dispersion relations. They are manifestly well-behaved in
the UV and free of discontinuities of the van Dam-Veltman-Zakharov type,
ensuring compatibility with standard tests of gravity. They may have important
phenomenological effects on large distance scales, offering an alternative to
dark energy. For the case in which the symmetry is broken by a vector field
with the wrong sign mass term, we identify four massless graviton modes (all
with positive-definite norm for a suitable choice of a parameter) and show the
absence of the discontinuity.Comment: 5 pages; revised versio
Astrophysical Bounds on Planck Suppressed Lorentz Violation
This article reviews many of the observational constraints on Lorentz
symmetry violation (LV). We first describe the GZK cutoff and other phenomena
that are sensitive to LV. After a brief historical sketch of research on LV, we
discuss the effective field theory description of LV and related questions of
principle, technical results, and observational constraints. We focus on
constraints from high energy astrophysics on mass dimension five operators that
contribute to LV electron and photon dispersion relations at order E/M_Planck.
We also briefly discuss constraints on renormalizable operators, and review the
current and future contraints on LV at order (E/M_Planck)^2.Comment: 30 pages, submitted to Lecture Notes in Physics, Quantum Gravity
Phenomenology, eds. G.Amelino-Camelia, J. Kowalski-Glikman (Springer-Verlag
Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?
This letter is a critique of Barbero's constrained Hamiltonian formulation of
General Relativity on which current work in Loop Quantum Gravity is based.
While we do not dispute the correctness of Barbero's formulation of general
relativity, we offer some criticisms of an aesthetic nature. We point out that
unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection
does not admit an interpretation as a space-time gauge field. We show that if
one tries to interpret Barbero's real SO(3) connection as a space-time gauge
field, the theory is not diffeomorphism invariant. We conclude that Barbero's
formulation is not a gauge theory of gravity in the sense that Ashtekar's
Hamiltonian formulation is. The advantages of Barbero's real connection
formulation have been bought at the price of giving up the description of
gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments,
accepted for publication in Classical and Quantum Gravit
Lorentz Violation in Extra Dimensions
In theories with extra dimensions it is well known that the Lorentz
invariance of the -dimensional spacetime is lost due to the compactified
nature of the dimensions leaving invariance only in 4d. In such theories
other sources of Lorentz violation may exist associated with the physics that
initiated the compactification process at high scales. Here we consider the
possibility of capturing some of this physics by analyzing the higher
dimensional analog of the model of Colladay and Kostelecky. In that scenario a
complete set of Lorentz violating operators arising from spontaneous Lorentz
violation, that are not obviously Planck-scale suppressed, are added to the
Standard Model action. Here we consider the influence of the analogous set of
operators which break Lorentz invariance in 5d within the Universal Extra
Dimensions picture. We show that such operators can greatly alter the
anticipated Kaluza-Klein(KK) spectra, induce electroweak symmetry breaking at a
scale related to the inverse compactification radius, yield sources of parity
violation in, e.g., 4d QED/QCD and result in significant violations of
KK-parity conservation produced by fermion Yukawa couplings, thus destabilizing
the lightest KK particle. LV in 6d is briefly discussed.Comment: 26 pages, 2 figures; additional references and discussio
Phenomenological description of quantum gravity inspired modified classical electrodynamics
We discuss a large class of phenomenological models incorporating quantum
gravity motivated corrections to electrodynamics. The framework is that of
electrodynamics in a birefringent and dispersive medium with non-local
constitutive relations, which are considered up to second order in the inverse
of the energy characterizing the quantum gravity scale. The energy-momentum
tensor, Green functions and frequency dependent refraction indices are
obtained, leading to departures from standard physics. The effective character
of the theory is also emphasized by introducing a frequency cutoff. The
analysis of its effects upon the standard notion of causality is performed,
showing that in the radiation regime the expected corrections get further
suppressed by highly oscillating terms, thus forbiding causality violations to
show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and
Gra
Unified N=2 Maxwell-Einstein and Yang-Mills-Einstein Supergravity Theories in Four Dimensions
We study unified N=2 Maxwell-Einstein supergravity theories (MESGTs) and
unified Yang-Mills Einstein supergravity theories (YMESGTs) in four dimensions.
As their defining property, these theories admit the action of a global or
local symmetry group that is (i) simple, and (ii) acts irreducibly on all the
vector fields of the theory, including the ``graviphoton''. Restricting
ourselves to the theories that originate from five dimensions via dimensional
reduction, we find that the generic Jordan family of MESGTs with the scalar
manifolds [SU(1,1)/U(1)] X [SO(2,n)/SO(2)X SO(n)] are all unified in four
dimensions with the unifying global symmetry group SO(2,n). Of these theories
only one can be gauged so as to obtain a unified YMESGT with the gauge group
SO(2,1). Three of the four magical supergravity theories defined by simple
Euclidean Jordan algebras of degree 3 are unified MESGTs in four dimensions.
Two of these can furthermore be gauged so as to obtain 4D unified YMESGTs with
gauge groups SO(3,2) and SO(6,2), respectively. The generic non-Jordan family
and the theories whose scalar manifolds are homogeneous but not symmetric do
not lead to unified MESGTs in four dimensions. The three infinite families of
unified five-dimensional MESGTs defined by simple Lorentzian Jordan algebras,
whose scalar manifolds are non-homogeneous, do not lead directly to unified
MESGTs in four dimensions under dimensional reduction. However, since their
manifolds are non-homogeneous we are not able to completely rule out the
existence of symplectic sections in which these theories become unified in four
dimensions.Comment: 47 pages; latex fil
Geometric entropy, area, and strong subadditivity
The trace over the degrees of freedom located in a subset of the space
transforms the vacuum state into a density matrix with non zero entropy. This
geometric entropy is believed to be deeply related to the entropy of black
holes. Indeed, previous calculations in the context of quantum field theory,
where the result is actually ultraviolet divergent, have shown that the
geometric entropy is proportional to the area for a very special type of
subsets. In this work we show that the area law follows in general from simple
considerations based on quantum mechanics and relativity. An essential
ingredient of our approach is the strong subadditive property of the quantum
mechanical entropy.Comment: Published versio
Critical Behavior of the Supersolid transition in Bose-Hubbard Models
We study the phase transitions of interacting bosons at zero temperature
between superfluid (SF) and supersolid (SS) states. The latter are
characterized by simultaneous off-diagonal long-range order and broken
translational symmetry. The critical phenomena is described by a
long-wavelength effective action, derived on symmetry grounds and verified by
explicit calculation. We consider two types of supersolid ordering:
checkerboard (X) and collinear (C), which are the simplest cases arising in two
dimensions on a square lattice. We find that the SF--CSS transition is in the
three-dimensional XY universality class. The SF--XSS transition exhibits
non-trivial new critical behavior, and appears, within a
expansion to be driven generically first order by fluctuations. However, within
a one--loop calculation directly in a strong coupling fixed point with
striking ``non-Bose liquid'' behavior is found. At special isolated
multi-critical points of particle-hole symmetry, the system falls into the 3d
Ising universality class.Comment: RevTeX, 24 pages, 16 figures. Also available at
http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm
- …
