10 research outputs found
Wrong Turn in Cyberspace: Using ICANN to Route Around the APA and the Constitution
The Internet relies on an underlying centralized hierarchy built into the domain name system (DNS) to control the routing for the vast majority of Internet traffic. At its heart is a single data file, known as the root. Control of the root provides singular power in cyberspace. This Article first describes how the United States government found itself in control of the root. It then describes how, in an attempt to meet concerns that the United States could so dominate an Internet chokepoint, the U. S. Department of Commerce (DoC) summoned into being the Internet Corporation for Assigned Names and Numbers (ICANN), a formally private nonprofit California corporation. DoC then signed contracts with ICANN in order to clothe it with most of the U. S. government\u27s power over the DNS, and convinced other parties to recognize ICANN\u27s authority. ICANN then took regulatory actions that the U. S. Department of Commerce was unable or unwilling to make itself, including the imposition on all registrants of Internet addresses of an idiosyncratic set of arbitration rules and procedures that benefit third-party trademark holders. Professor Froomkin then argues that the use of ICANN to regulate in the stead of an executive agency violates fundamental values and policies designed to ensure democratic control over the use of government power, and sets a precedent that risks being expanded into other regulatory activities. He argues that DoC\u27s use of ICANN to make rules either violates the APA\u27s requirement for notice and comment in rulemaking and judicial review, or it violates the Constitution\u27s nondelegation doctrine. Professor Froomkin reviews possible alternatives to ICANN, and ultimately proposes a decentralized structure in which the namespace of the DNS is spread out over a transnational group of policy partners with DoC
Two and a Half Hurdles Between Eurozone Debts and U.S. Courts: How Recent Distressed Foreign Deals Could Soon Be Unwound Domestically
Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial
Purpose: to report the neurocognitive findings in a phase III randomized trial evaluating survival and neurologic and neurocognitive function in patients with brain metastases from solid tumors receiving whole-brain radiation therapy (WBRT) with or without motexafin gadolinium (MGd).Patients and Methods: patients were randomly assigned to receive WBRT 30 Gy in 10 fractions with or without MGd 5 mg/kg/d. Monthly neurocognitive testing for memory, executive function, and fine motor skill was performed.Results: four hundred one patients were enrolled (251 with non–small-cell lung cancer, 75 with breast cancer, and 75 with other cancers); 90.5% patients had impairment of one or more neurocognitive tests at baseline. Neurocognitive test scores of memory, fine motor speed, executive function, and global neurocognitive impairment at baseline were correlated with brain tumor volume and predictive of survival. There was no statistically significant difference between treatment arms in time to neurocognitive progression. Patients with lung cancer (but not other types of cancer) who were treated with MGd tended to have improved memory and executive function (P = .062) and improved neurologic function as assessed by a blinded events review committee (P = .048).Conclusion: neurocognitive tests are a relatively sensitive measure of brain functioning; a combination of tumor prognostic variables and brain function assessments seems to predict survival better than tumor variables alone. Although the addition of MGd to WBRT did not produce a significant overall improvement between treatment arms, MGd may improve memory and executive function and prolong time to neurocognitive and neurologic progression in patients with brain metastases from lung cancer.<br/
Rates of Retinal Nerve Fiber Layer Thinning in Glaucoma Suspect Eyes
PURPOSE: To compare the rates of retinal nerve fiber layer (RNFL) loss in patients suspect of having glaucoma who developed visual field damage (VFD) to those who did not develop VFD, and to determine whether the rate of RNFL loss can be used to predict who will develop VFD.. DESIGN: Prospective observational cohort study PARTICIPANTS: Glaucoma suspects, defined as having glaucomatous optic neuropathy or ocular hypertension (Intraocular pressure (IOP)>21 mmHg) without repeatable VFD at baseline from the Diagnostic Innovations in Glaucoma Study, and the African Descent and Glaucoma Evaluation Study. METHODS: Global and quadrant RNFL thickness (RNFLT) were measured with the Spectralis spectral-domain optical coherence tomography (SD-OCT). VFD was defined as having 3 consecutive abnormal visual fields. The rate of RNFL loss in eyes developing VFD was compared with eyes not developing VFD using multivariable linear mixed-effects models. A joint longitudinal survival model utilized the estimated RNFLT slope to predict the risk of developing VFD, while adjusting for potential confounding variables. MAIN OUTCOME MEASURES: The rate of RNFL thinning and the probability of developing VFD. RESULTS: Four hundred and fifty-four eyes of 294 glaucoma suspects were included. The average number of SD-OCT examinations was 4.6 (range, 2–9) with median follow-up time of 2.2 (0.4–4.1) years. Forty eyes (8.8%) developed VFD. The estimated mean rate of global RNFL loss was significantly faster in eyes developing VFD compared with eyes that did not (−2.02μm/year vs. −0.82μm/year, P<0.001). The joint longitudinal survival model showed that each 1μm/year faster rate of global RNFL loss corresponded to a 2.05 times higher risk of developing VFD (Hazards Ratio (HR)=2.05, 95% Confidence Interval (CI): 1.14–3.71; p=0.017). CONCLUSIONS: The rate of global RNFL loss was more than twice as fast in eyes developing VFD compared with eyes that did not develop them. Joint longitudinal survival model showed that a 1μm/year faster rate of RNFLT loss corresponded to a 2.05 times higher risk of developing VFD. These results suggest that measuring the rate of SD-OCT RNFL loss may be a useful tool to help identify patients who are at a high risk of developing visual field loss
