435 research outputs found
The quantum state vector in phase space and Gabor's windowed Fourier transform
Representations of quantum state vectors by complex phase space amplitudes,
complementing the description of the density operator by the Wigner function,
have been defined by applying the Weyl-Wigner transform to dyadic operators,
linear in the state vector and anti-linear in a fixed `window state vector'.
Here aspects of this construction are explored, with emphasis on the connection
with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple
quantum states from various choices of window are presented as illustrations.
Generalized Bargmann representations of the state vector appear as special
cases, associated with Gaussian windows. For every choice of window, amplitudes
lie in a corresponding linear subspace of square-integrable functions on phase
space. A generalized Born interpretation of amplitudes is described, with both
the Wigner function and a generalized Husimi function appearing as quantities
linear in an amplitude and anti-linear in its complex conjugate.
Schr\"odinger's time-dependent and time-independent equations are represented
on phase space amplitudes, and their solutions described in simple cases.Comment: 36 pages, 6 figures. Revised in light of referees' comments, and
further references adde
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Cosmology from Moduli Dynamics
We investigate moduli field dynamics in supergravity/M-theory like set ups
where we turn on fluxes along some or all of the extra dimensions. As has been
argued in the context of string theory, we observe that the fluxes tend to
stabilize the squashing (or shape) modes. Generically we find that at late
times the shape is frozen while the radion evolves as a quintessence field. At
earlier times we have a phase of radiation domination where both the volume and
the shape moduli are slowly evolving. However, depending on the initial
conditions and the parameters of the theory, like the value of the fluxes,
curvature of the internal manifold and so on, the dynamics of the internal
manifold can be richer with interesting cosmological consequences, including
inflation.Comment: 38 pages, 6 figures; references adde
Farming and the geography of nutrient production for human use: a transdisciplinary analysis
Background: Information about the global structure of agriculture and nutrient production and its diversity is essential to improve present understanding of national food production patterns, agricultural livelihoods, and food chains, and their linkages to land use and their associated ecosystems services. Here we provide a plausible breakdown of global agricultural and nutrient production by farm size, and also study the associations between farm size, agricultural diversity, and nutrient production. This analysis is crucial to design interventions that might be appropriately targeted to promote healthy diets and ecosystems in the face of population growth, urbanisation, and climate change.
Methods: We used existing spatially-explicit global datasets to estimate the production levels of 41 major crops, seven livestock, and 14 aquaculture and fish products. From overall production estimates, we estimated the production of vitamin A, vitamin B₁₂, folate, iron, zinc, calcium, calories, and protein. We also estimated the relative contribution of farms of different sizes to the production of different agricultural commodities and associated nutrients, as well as how the diversity of food production based on the number of different products grown per geographic pixel and distribution of products within this pixel (Shannon diversity index [H]) changes with different farm sizes.
Findings: Globally, small and medium farms (≤50 ha) produce 51–77% of nearly all commodities and nutrients examined here. However, important regional differences exist. Large farms (>50 ha) dominate production in North America, South America, and Australia and New Zealand. In these regions, large farms contribute between 75% and 100% of all cereal, livestock, and fruit production, and the pattern is similar for other commodity groups. By contrast, small farms (≤20 ha) produce more than 75% of most food commodities in sub-Saharan Africa, southeast Asia, south Asia, and China. In Europe, west Asia and north Africa, and central America, medium-size farms (20–50 ha) also contribute substantially to the production of most food commodities. Very small farms (≤2 ha) are important and have local significance in sub-Saharan Africa, southeast Asia, and south Asia, where they contribute to about 30% of most food commodities. The majority of vegetables (81%), roots and tubers (72%), pulses (67%), fruits (66%), fish and livestock products (60%), and cereals (56%) are produced in diverse landscapes (H>1·5). Similarly, the majority of global micronutrients (53–81%) and protein (57%) are also produced in more diverse agricultural landscapes (H>1·5). By contrast, the majority of sugar (73%) and oil crops (57%) are produced in less diverse ones (H≤1·5), which also account for the majority of global calorie production (56%). The diversity of agricultural and nutrient production diminishes as farm size increases. However, areas of the world with higher agricultural diversity produce more nutrients, irrespective of farm size.
Interpretation: Our results show that farm size and diversity of agricultural production vary substantially across regions and are key structural determinants of food and nutrient production that need to be considered in plans to meet social, economic, and environmental targets. At the global level, both small and large farms have key roles in food and nutrition security. Efforts to maintain production diversity as farm sizes increase seem to be necessary to maintain the production of diverse nutrients and viable, multifunctional, sustainable landscapes.
Funding: Commonwealth Scientific and Industrial Research Organisation, Bill & Melinda Gates Foundation, CGIAR Research Programs on Climate Change, Agriculture and Food Security and on Agriculture for Nutrition and Health funded by the CGIAR Fund Council, Daniel and Nina Carasso Foundation, European Union, International Fund for Agricultural Development, Australian Research Council, National Science Foundation, Gordon and Betty Moore Foundation, and Joint Programming Initiative on Agriculture, Food Security and Climate Change—Belmont Forum
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Language of Lullabies: The Russification and De-Russification of the Baltic States
This article argues that the laws for promotion of the national languages are a legitimate means for the Baltic states to establish their cultural independence from Russia and the former Soviet Union
Cognitive Engineering
Cognitive engineering is the application of cognitive psychology and related disciplines to the design and operation of human–machine systems. Cognitive engineering combines both detailed and close study of the human worker in the actual work context and the study of the worker in more controlled environments. Cognitive engineering combines multiple methods and perspectives to achieve the goal of improved system performance. Given the origins of experimental psychology itself in issues regarding the design of human–machine systems, cognitive engineering is a core, or fundamental, discipline within academic psychology
Securities Class Actions Move North: A Doctrinal and Empirical Analysis of Securities Class Actions in Canada
Alcohol-related behaviours, beliefs, and knowledge regarding cancer risk related to alcohol in the New South Wales LGBTQ+ community
Sexuality and gender diverse (LGBTQ+) people are a priority for cancer control due to differing experience of risk factors for cancer and participation in cancer screening services compared to cisgender and heterosexual people. Alcohol use among LGBTQ+ people is typically higher compared to the general population, but awareness of alcohol-related cancer risk in the LGBTQ+ community is unclear and other alcohol-related behaviours/beliefs (e.g., perceived health risks) have also been under-researched in this community.
This technical report details a study conducted in collaboration with ACON and Cancer Institute NSW to examine a range of alcohol-related behaviours and beliefs among LGBTQ+ adults in NSW, including alcohol use patterns, perceived health risks of alcohol use, awareness of alcohol-related cancer risk, and alcohol-related help-seeking behaviours
- …
