7,163 research outputs found
Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics
We propose to couple an on-chip high finesse superconducting cavity to the
lateral-motion and spin state of a single electron trapped on the surface of
superfluid helium. We estimate the motional coherence times to exceed 15
microseconds, while energy will be coherently exchanged with the cavity photons
in less than 10 nanoseconds for charge states and faster than 1 microsecond for
spin states, making the system attractive for quantum information processing
and cavity quantum electrodynamics experiments. Strong interaction with cavity
photons will provide the means for both nondestructive readout and coupling of
distant electrons.Comment: 4 pages, 3 figures, supplemental material
Polaron Transport in the Paramagnetic Phase of Electron-Doped Manganites
The electrical resistivity, Hall coefficient, and thermopower as functions of
temperature are reported for lightly electron-doped Ca(1-x)La(x)MnO(3)(0 <= x
<= 0.10). Unlike the case of hole-doped ferromagnetic manganites, the magnitude
and temperature dependence of the Hall mobility for these compounds is found to
be inconsistent with small-polaron theory. The transport data are better
described by the Feynman polaron theory and imply intermediate coupling (alpha
\~ 5.4) with a band effective mass, m*~4.3 m_0, and a polaron mass, m_p ~ 10
m_0.Comment: 7 pp., 7 Fig.s, to be published, PR
Point force manipulation and activated dynamics of polymers adsorbed on structured substrates
We study the activated motion of adsorbed polymers which are driven over a
structured substrate by a localized point force.Our theory applies to
experiments with single polymers using, for example, tips of scanning force
microscopes to drag the polymer.We consider both flexible and semiflexible
polymers,and the lateral surface structure is represented by double-well or
periodic potentials. The dynamics is governed by kink-like excitations for
which we calculate shapes, energies, and critical point forces. Thermally
activated motion proceeds by the nucleation of a kink-antikink pair at the
point where the force is applied and subsequent diffusive separation of kink
and antikink. In the stationary state of the driven polymer, the collective
kink dynamics can be described by an one-dimensional symmetric simple exclusion
process.Comment: 7 pages, 2 Figure
Working capital management in the Swiss chemical industry
The investigation of Swiss chemical and pharmaceutical companies regarding their working capital management has revealed the huge potential which is lying in the management of short term assets and liabilities. Furthermore, the considerable differences between the single firms show that an optimized working capital management may play an important role for a firm’s competitiveness. A successful working apital strategy relies on the commitment and awareness of the management and on efficient working capital practices on the operative level. In addition, internal and external collaboration leads to more competitiveness, both for the firm as well as for the whole supply chain. A consistent and ongoing monitoring ensures sustainable improvements, and can be supported and enhanced by a benchmarking analysis and the adaption of best practices
Query processing of spatial objects: Complexity versus Redundancy
The management of complex spatial objects in applications, such as geography and cartography,
imposes stringent new requirements on spatial database systems, in particular on efficient
query processing. As shown before, the performance of spatial query processing can be improved
by decomposing complex spatial objects into simple components. Up to now, only decomposition
techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have
been considered. In this paper, we will investigate the natural trade-off between the complexity of
the components and the redundancy, i.e. the number of components, with respect to its effect on
efficient query processing. In particular, we present two new decomposition methods generating
a better balance between the complexity and the number of components than previously known
techniques. We compare these new decomposition methods to the traditional undecomposed representation
as well as to the well-known decomposition into convex polygons with respect to their
performance in spatial query processing. This comparison points out that for a wide range of query
selectivity the new decomposition techniques clearly outperform both the undecomposed representation
and the convex decomposition method. More important than the absolute gain in performance
by a factor of up to an order of magnitude is the robust performance of our new decomposition
techniques over the whole range of query selectivity
Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel
This paper describes the design, implementation and testing of a suite of
algorithms to enable depth constrained autonomous bathymetric (underwater
topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth
and a bounding polygon, the ASV will find and follow the intersection of the
bounding polygon and the depth contour as modeled online with a Gaussian
Process (GP). This intersection, once mapped, will then be used as a boundary
within which a path will be planned for coverage to build a map of the
Bathymetry. Methods for sequential updates to GP's are described allowing
online fitting, prediction and hyper-parameter optimisation on a small embedded
PC. New algorithms are introduced for the partitioning of convex polygons to
allow efficient path planning for coverage. These algorithms are tested both in
simulation and in the field with a small twin hull differential thrust vessel
built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field
Robotic
- …
