762 research outputs found

    Analysis of unconstrained nonlinear MPC schemes with time varying control horizon

    Get PDF
    For discrete time nonlinear systems satisfying an exponential or finite time controllability assumption, we present an analytical formula for a suboptimality estimate for model predictive control schemes without stabilizing terminal constraints. Based on our formula, we perform a detailed analysis of the impact of the optimization horizon and the possibly time varying control horizon on stability and performance of the closed loop

    Three-dimensional spontaneous magnetic reconnection in neutral current sheets

    Full text link
    Magnetic reconnection in an antiparallel uniform Harris current sheet equilibrium, which is initially perturbed by a region of enhanced resistivity limited in all three dimensions, is investigated through compressible magnetohydrodynamic simulations. Variable resistivity, coupled to the dynamics of the plasma by an electron-ion drift velocity criterion, is used during the evolution. A phase of magnetic reconnection amplifying with time and leading to eruptive energy release is triggered only if the initial perturbation is strongly elongated in the direction of current flow or if the threshold for the onset of anomalous resistivity is significantly lower than in the corresponding two-dimensional case. A Petschek-like configuration is then built up for \sim 100 Alfven times, but remains localized in the third dimension. Subsequently, a change of topology to an O-line at the center of the system (``secondary tearing'') occurs. This leads to enhanced and time-variable reconnection, to a second pair of outflow jets directed along the O-line, and to expansion of the reconnection process into the third dimension. High parallel current density components are created mainly near the region of enhanced resistivity.Comment: 22 pages, 14 figures (Figs. 3,9,10, and 14 as external GIF-Files

    Energy transfer in Hall-MHD turbulence: cascades, backscatter, and dynamo action

    Get PDF
    Scale interactions in Hall MHD are studied using both the mean field theory derivation of transport coefficients, and direct numerical simulations in three space dimensions. In the magnetically dominated regime, the eddy resistivity is found to be negative definite, leading to large scale instabilities. A direct cascade of the total energy is observed, although as the amplitude of the Hall effect is increased, backscatter of magnetic energy to large scales is found, a feature not present in MHD flows. The coupling between the magnetic and velocity fields is different than in the MHD case, and backscatter of energy from small scale magnetic fields to large scale flows is also observed. For the magnetic helicity, a strong quenching of its transfer is found. We also discuss non-helical magnetically forced Hall-MHD simulations where growth of a large scale magnetic field is observed.Comment: 25 pages, 16 figure

    New dynamo pattern revealed by solar helical magnetic fields

    Full text link
    Previously unobservable mirror asymmetry of the solar magnetic field -- a key ingredient of the dynamo mechanism which is believed to drive the 11-year activity cycle -- has now been measured. This was achieved through systematic monitoring of solar active regions carried out for more than 20 years at observatories in Mees, Huairou, and Mitaka. In this paper we report on detailed analysis of vector magnetic field data, obtained at Huairou Solar Observing Station in China. Electric current helicity (the product of current and magnetic field component in the same direction) was estimated from the data and a latitude-time plot of solar helicity during the last two solar cycles has been produced. We find that like sunspots helicity patterns propagate equatorwards but unlike sunspot polarity helicity in each solar hemisphere does not change sign from cycle to cycle - confirming the theory. There are, however, two significant time-latitudinal domains in each cycle when the sign does briefly invert. Our findings shed new light on stellar and planetary dynamos and has yet to be included in the theory.Comment: 4 pages, 2 figures 0 tables. MNRAS Letters, accepte

    Parity properties of an advection-dominated solar \alpha^2\Om-dynamo

    Full text link
    We have developed a high-precision code which solves the kinematic dynamo problem both for given rotation law and meridional flow in the case of a low eddy diffusivity of the order of 101110^{11} cm2^2/s known from the sunspot decay. All our models work with an \alf-effect which is positive (negative) in the northern (southern) hemisphere. It is concentrated in radial layers located either at the top or at the bottom of the convection zone. We have also considered an \alf-effect uniformly distributed in all the convection zone. In the present paper the main attention is focused on i) the parity of the solution, ii) the form of the butterfly diagram and iii) the phase relation of the resulting field components. If the helioseismologically derived internal solar rotation law is considered, a model without meridional flow of high magnetic Reynolds number (corresponding to low eddy diffusivity) fails in all the three issues in comparison with the observations. However, a meridional flow with equatorial drift at the bottom of the convection zone of few meters by second can indeed enforce the equatorward migration of the toroidal magnetic field belts similar to the observed butterfly diagram but, the solution has only a dipolar parity if the (positive) \alf-effect is located at the base of the convection zone rather than at the top. We can, therefore, confirm the main results of a similar study by Dikpati & Gilman (2001).Comment: 9 pages, 16 figures, to appear on Astronomy and Astrophysic

    Testing magnetofrictional extrapolation with the Titov-D\'emoulin model of solar active regions

    Full text link
    We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and D\'emoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version, having a parabolic current density profile, is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade-"hyperbolic flux tube" and "bald patch separatrix surface"-are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy of reconstruction is also addressed, confirming that the initial field that best matches the external potential field of the model quite naturally leads to the best reconstruction. Extrapolating the magnetogram of a Titov-D\'emoulin equilibrium in the unstable range of parameter space yields a sequence of two opposing evolutionary phases which clearly indicate the unstable nature of the configuration: a partial buildup of the flux rope with rising free energy is followed by destruction of the rope, losing most of the free energy.Comment: 14 pages, 10 figure

    Evolution of helicity in NOAA 10923 over three consecutive solar rotations

    Full text link
    We have studied the evolution of magnetic helicity and chirality in an active region over three consecutive solar rotations. The region when it first appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA 10930, 10935 and 10941. We compare the chirality of these regions at photospheric, chromospheric and coronal heights. The observations used for photospheric and chromospheric heights are taken from Solar Vector Magnetograph (SVM) and H_alpha imaging telescope of Udaipur Solar Observatory (USO), respectively. We discuss the chirality of the sunspots and associated H_alpha filaments in these regions. We find that the twistedness of superpenumbral filaments is maintained in the photospheric transverse field vectors also. We also compare the chirality at photospheric and chromospheric heights with the chirality of the associated coronal loops, as observed from the HINODE X-Ray Telescope.Comment: 8 pages, 4 figure

    Uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system

    Full text link
    We use optimal transportation techniques to show uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system. Our proof extends the method used by Loeper in J. Math. Pures Appl. 86, 68-79 (2006) to obtain uniqueness results for the Vlasov-Poisson system.Comment: AMS-LaTeX, 21 page
    corecore