185 research outputs found
Bone fragility and decline in stem cells in prematurely aging DNA repair deficient trichothiodystrophy mice
Trichothiodystrophy (TTD) is a rare, autosomal recessive nucleotide excision repair (NER) disorder caused by mutations in components of the dual functional NER/basal transcription factor TFIIH. TTD mice, carrying a patient-based point mutation in the Xpd gene, strikingly resemble many features of the human syndrome and exhibit signs of premature aging. To examine to which extent TTD mice resemble the normal process of aging, we thoroughly investigated the bone phenotype. Here, we show that female TTD mice exhibit accelerated bone aging from 39 weeks onwards as well as lack of periosteal apposition leading to reduced bone strength. Before 39 weeks have passed, bones of wild-type and TTD mice are identical excluding a developmental defect. Albeit that bone formation is decreased, osteoblasts in TTD mice retain bone-forming capacity as in vivo PTH treatment leads to increased cortical thickness. In vitro bone marrow cell cultures showed that TTD osteoprogenitors retain the capacity to differentiate into osteoblasts. However, after 13 weeks of age TTD females show decreased bone nodule formation. No increase in bone resorption or the number of osteoclasts was detected. In conclusion, TTD mice show premature bone aging, which is preceded by a decrease in mesenchymal stem cells/osteoprogenitors and a change in systemic factors, identifying DNA damage and repair as key determinants for bone fragility by influencing osteogenesis and bone metabolism
The Effects of Stress at Work and at Home on Inflammation and Endothelial Dysfunction
This study examined whether stress at work and at home may be related to dysregulation of inflammation and endothelial function, two important contributors to the development of cardiovascular disease. In order to explore potential biological mechanisms linking stress with cardiovascular health, we investigated cross-sectional associations between stress at work and at home with an inflammation score (n's range from 406–433) and with two endothelial biomarkers (intercellular and vascular adhesion molecules, sICAM-1 and sVCAM-1; n's range from 205–235) in a cohort of healthy US male health professionals. No associations were found between stress at work or at home and inflammation. Men with high or medium levels of stress at work had significantly higher levels of sVCAM-1 (13% increase) and marginally higher levels of sICAM-1 (9% increase), relative to those reporting low stress at work, independent of health behaviors. Men with high levels of stress at home had marginally higher levels of both sVCAM-1 and sICAM-1 than those with low stress at home. While lack of findings related to inflammation are somewhat surprising, if replicated in future studies, these findings may suggest that endothelial dysfunction is an important biological mechanism linking stress at work with cardiovascular health outcomes in men
Domains of Chronic Stress, Lifestyle Factors, and Allostatic Load in Middle-Aged Mexican-American Women
Abstract available at publisher's website
The Physics of the B Factories
This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C
Cognitive function, social integration and mortality in a U.S. national cohort study of older adults
<p>Abstract</p> <p>Background</p> <p>Prior research suggests an interaction between social networks and Alzheimer's disease pathology and cognitive function, all predictors of survival in the elderly. We test the hypotheses that both social integration and cognitive function are independently associated with subsequent mortality and there is an interaction between social integration and cognitive function as related to mortality in a national cohort of older persons.</p> <p>Methods</p> <p>Data were analyzed from a longitudinal follow-up study of 5,908 American men and women aged 60 years and over examined in 1988–1994 followed an average 8.5 yr. Measurements at baseline included self-reported social integration, socio-demographics, health, body mass index, C-reactive protein and a short index of cognitive function (SICF).</p> <p>Results</p> <p>Death during follow-up occurred in 2,431. In bivariate analyses indicators of greater social integration were associated with higher cognitive function. Among persons with SICF score of 17, 22% died compared to 54% of those with SICF score of 0–11 (p < 0.0001). After adjusting for confounding by baseline socio-demographics and health status, the hazards ratio (HR) (95% confidence limits) for low SICF score was 1.43 (1.13–1.80, p < 0.001). After controlling for health behaviors, blood pressure and body mass, C-reactive protein and social integration, the HR was 1.36 (1.06–1.76, p = 0.02). Further low compared to high social integration was also independently associated with increased risk of mortality: HR 1.24 (1.02–1.52, p = 0.02).</p> <p>Conclusion</p> <p>In a cohort of older Americans, analyses demonstrated a higher risk of death independent of confounders among those with low cognitive function and low social integration with no significant interaction between them.</p
The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism
The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans
Gender, Obesity and Repeated Elevation of C-Reactive Protein: Data from the CARDIA Cohort
C-reactive Protein (CRP) measurements above 10 mg/L have been conventionally treated as acute inflammation and excluded from epidemiologic studies of chronic inflammation. However, recent evidence suggest that such CRP elevations can be seen even with chronic inflammation. The authors assessed 3,300 participants in The Coronary Artery Risk Development in Young Adults study, who had two or more CRP measurements between 1992/3 and 2005/6 to a) investigate characteristics associated with repeated CRP elevation above 10 mg/L; b) identify subgroups at high risk of repeated elevation; and c) investigate the effect of different CRP thresholds on the probability of an elevation being one-time rather than repeated. 225 participants (6.8%) had one-time and 103 (3.1%) had repeated CRP elevation above 10 mg/L. Repeated elevation was associated with obesity, female gender, low income, and sex hormone use. The probability of an elevation above 10 mg/L being one-time rather than repeated was lowest (51%) in women with body mass index above 31 kg/m2, compared to 82% in others. These findings suggest that CRP elevations above 10 mg/L in obese women are likely to be from chronic rather than acute inflammation, and that CRP thresholds above 10 mg/L may be warranted to distinguish acute from chronic inflammation in obese women
Progressive vertebral deformities despite unchanged bone mineral density in patients with sarcoidosis: a 4-year follow-up study
To evaluate the incidence of new and/or progressive vertebral deformities and changes in bone mineral density, we re-examined 66 patients with sarcoidosis after a follow-up period of four years. In 17 subjects (26%) new and/or progressive vertebral deformities were found, though BMD did not change significantly. INTRODUCTION: Previous studies from our group have shown that morphometric vertebral deformities suggestive of fractures can be found in 20% of patients with sarcoidosis, despite a normal bone mineral density (BMD). The aim of this study was to determine the incidence of new and/or progressive vertebral deformities and the evolution of BMD during the course of this disease. METHODS: BMD of the hip (DXA) and vertebral fracture assessment (VFA) with lateral single energy densitometry was performed at baseline and after 45 months in 66 patients with sarcoidosis. Potential predictors of new/ progressive vertebral deformities were assessed using logistic regression analysis. RESULTS: The BMD of the total group was unchanged after follow-up. The prevalence of vertebral deformities increased from 20 to 32% (p < 0.05); in 17 subjects (26%) new or progressive vertebral deformities were diagnosed. A lower T-score of the femoral neck [(OR = 2.5 (CI: 1.0-5.9), p < 0.05)] and mother with a hip fracture [(OR = 14.1 (CI: 1.4-142.6), p < 0.05)] were independent predictors of new/progressive deformities. CONCLUSIONS: In subjects with sarcoidosis the number of vertebral deformities increases in the course of this disease, despite unchanged BMD. The combination of low normal BMD and family history of fragility fractures confers an increased risk of the incidence of these deformities
Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation
<p>Abstract</p> <p>Background</p> <p>The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC).</p> <p>Results</p> <p>This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged.</p> <p>Conclusion</p> <p>The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i) producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii) increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.</p
Screening of protein kinase inhibitors identifies PKC inhibitors as inhibitors of osteoclastic acid secretion and bone resorption
<p>Abstract</p> <p>Background</p> <p>Bone resorption is initiated by osteoclastic acidification of the resorption lacunae. This process is mediated by secretion of protons through the V-ATPase and chloride through the chloride antiporter ClC-7. To shed light on the intracellular signalling controlling extracellular acidification, we screened a protein kinase inhibitor library in human osteoclasts.</p> <p>Methods</p> <p>Human osteoclasts were generated from CD14+ monocytes. The effect of different kinase inhibitors on lysosomal acidification in human osteoclasts was investigated using acridine orange for different incubation times (45 minutes, 4 and 24 hours). The inhibitors were tested in an acid influx assay using microsomes isolated from human osteoclasts. Bone resorption by human osteoclasts on bone slices was measured by calcium release. Cell viability was measured using AlamarBlue.</p> <p>Results</p> <p>Of the 51 compounds investigated only few inhibitors were positive in both acidification and resorption assays. Rottlerin, GF109203X, Hypericin and Ro31-8220 inhibited acid influx in microsomes and bone resorption, while Sphingosine and Palmitoyl-DL-carnitine-Cl showed low levels of inhibition. Rottlerin inhibited lysosomal acidification in human osteoclasts potently.</p> <p>Conclusions</p> <p>In conclusion, a group of inhibitors all indicated to inhibit PKC reduced acidification in human osteoclasts, and thereby bone resorption, indicating that acid secretion by osteoclasts may be specifically regulated by PKC in osteoclasts.</p
- …
