2,297 research outputs found
On the capillary self-focusing in a microfluidic system
A computational framework is developed to address capillary self-focusing in
Step Emulsification. The microfluidic system consists of a single shallow and
wide microchannel that merges into a deep reservoir. A continuum approach
coupled with a volume of fluid method is used to model the capillary
self-focusing effect. The original governing equations are reduced using the
Hele-Shaw approximation. We show that the interface between the two fluids
takes the shape of a neck narrowing in the flow direction just before entering
the reservoir, in agreement with our experimental observations. Our
computational model relies on the assumption that the pressure at the boundary,
where the fluid exits into the reservoir, is the uniform pressure in the
reservoir. We investigate this hypothesis by comparing the numerical results
with experimental data. We conjecture that the pressure boundary condition
becomes important when the width of the neck is comparable to the depth of the
microchannel. A correction to the exit pressure boundary condition is then
proposed, which is determined by comparison with experimental data. We also
present the experimental observations and the numerical results of the
transitions of breakup regimes.Comment: To appear in: Fluid Dynamics Researc
Capillary focusing close to a topographic step: Shape and instability of confined liquid filaments
Step-emulsification is a microfluidic technique for droplet generation which
relies on the abrupt decrease of confinement of a liquid filament surrounded by
a continuous phase. A striking feature of this geometry is the transition
between two distinct droplet breakup regimes, the "step-regime" and
"jet-regime", at a critical capillary number. In the step-regime, small and
monodisperse droplets break off from the filament directly at a topographic
step, while in the jet-regime a jet protrudes into the larger channel region
and large plug-like droplets are produced. We characterize the breakup behavior
as a function of the filament geometry and the capillary number and present
experimental results on the shape and evolution of the filament for a wide
range of capillary numbers in the jet-regime. We compare the experimental
results with numerical simulations. Assumptions based on the smallness of the
depth of the microfluidic channel allow to reduce the governing equations to
the Hele-Shaw problem with surface tension. The full nonlinear equations are
then solved numerically using a volume-of-fluid based algorithm. The
computational framework also captures the transition between both regimes,
offering a deeper understanding of the underlying breakup mechanism
Shape of a liquid front upon dewetting
We examine the profile of a liquid front of a film that is dewetting a solid
substrate. Since volume is conserved, the material that once covered the
substrate is accumulated in a rim close to the three phase contact line.
Theoretically, such a profile of a Newtonian liquid resembles an exponentially
decaying harmonic oscillation that relaxes into the prepared film thickness.
For the first time, we were able to observe this behavior experimentally. A
non-Newtonian liquid - a polymer melt - however, behaves differently. Here,
viscoelastic properties come into play. We will demonstrate that by analyzing
the shape of the rim profile. On a nm scale, we gain access to the rheology of
a non-Newtonian liquid.Comment: 4 pages, 4 figure
Remotely piloted LTA vehicle for surveillance
Various aspects of a remotely piloted mini-LTA vehicle for surveillance, monitoring and measurement for civilian and military applications are considered. Applications, operations and economics are discussed
Self-assembled granular walkers
Mechanisms of locomotion in microscopic systems are of great interest not
only for technological applications, but also for the sake of understanding,
and potentially harnessing, processes far from thermal equilibrium.
Down-scaling is a particular challenge, and has led to a number of interesting
concepts including thermal ratchet systems and asymmetric swimmers. Here we
present a system which is particularly intriguing, as it is self-assembling and
uses a robust mechanism which can be implemented in various settings. It
consists of small spheres of different size which adhere to each other, and are
subject to an oscillating (zero average) external force eld. An inherent
nonlinearity in the mutual force network leads to force rectication and hence
to locomotion. We present a model that accounts for the observed behaviour and
demonstrates the wide applicability and potential scalability of the concept.Comment: 17 pages, 4 figure
Thermal noise influences fluid flow in thin films during spinodal dewetting
Experiments on dewetting thin polymer films confirm the theoretical
prediction that thermal noise can strongly influence characteristic time-scales
of fluid flow and cause coarsening of typical length scales. Comparing the
experiments with deterministic simulations, we show that the Navier-Stokes
equation has to be extended by a conserved bulk noise term to accomplish the
observed spectrum of capillary waves. Due to thermal fluctuations the spectrum
changes from an exponential to a power law decay for large wavevectors. Also
the time evolution of the typical wavevector of unstable perturbations exhibits
noise induced coarsening that is absent in deterministic hydrodynamic flow.Comment: 4 pages, 3 figure
Isolated development of inner (wall) caries like lesions in a bacterial-based in vitro model
The study conducted in a bacterial-based in vitro caries model aimed to determine whether typical inner secondary caries lesions can be detected at cavity walls of restorations with selected gap widths when the development of outer lesions is inhibited. Sixty bovine tooth specimens were randomly assigned to the following groups: test group 50 (TG50; gap, 50μm), test group 100 (TG100; gap, 100μm), test group 250 (TG250; gap, 250μm) and a control group (CG; gap, 250μm). The outer tooth surface of the test group specimens was covered with an acid-resistant varnish to inhibit the development of an outer caries lesion. After incubation in the caries model, the area of demineralization at the cavity wall was determined by confocal laser scanning microscopy. All test group specimens demonstrated only wall lesions. The CG specimens developed outer and wall lesions. The TG250 specimens showed significantly less wall lesion area compared to the CG (p < 0.05). In the test groups, a statistically significant increase (p < 0.05) in lesion area could be detected in enamel between TG50 and TG250 and in dentine between TG50 and TG100. In conclusion, the inner wall lesions of secondary caries can develop without the presence of outer lesions and therefore can be regarded as an entity on their own. The extent of independently developed wall lesions increased with gap width in the present settin
Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films
We show here that the morphological pathway of spontaneous dewetting of
ultrathin Ag films on SiO2 under nanosecond laser melting is found to be film
thickness dependent. For films with thickness h between 2 <= h <= 9.5 nm, the
morphology during the intermediate stages of dewetting consisted of
bicontinuous structures. For films 11.5 <= h <= 20 nm, the intermediate stages
consisted of regularly-sized holes. Measurement of the characteristic length
scales for different stages of dewetting as a function of film thickness showed
a systematic increase, which is consistent with the spinodal dewetting
instability over the entire thickness range investigated. This change in
morphology with thickness is consistent with observations made previously for
polymer films [A. Sharma et al, Phys. Rev. Lett., v81, pp3463 (1998); R.
Seemann et al, J. Phys. Cond. Matt., v13, pp4925, (2001)]. Based on the
behavior of free energy curvature that incorporates intermolecular forces, we
have estimated the morphological transition thickness for the intermolecular
forces for Ag on SiO2 . The theory predictions agree well with observations for
Ag. These results show that it is possible to form a variety of complex Ag
nanomorphologies in a consistent manner, which could be useful in optical
applications of Ag surfaces, such as in surface enhanced Raman sensing.Comment: 20 pages, 5 figure
Reanalysis of the FEROS observations of HIP 11952
Aims. We reanalyze FEROS observations of the star HIP 11952 to reassess the
existence of the proposed planetary system. Methods. The radial velocity of the
spectra were measured by cross-correlating the observed spectrum with a
synthetic template. We also analyzed a large dataset of FEROS and HARPS
archival data of the calibrator HD 10700 spanning over more than five years. We
compared the barycentric velocities computed by the FEROS and HARPS pipelines.
Results. The barycentric correction of the FEROS-DRS pipeline was found to be
inaccurate and to introduce an artificial one-year period with a semi-amplitude
of 62 m/s. Thus the reanalysis of the FEROS data does not support the existence
of planets around HIP 11952.Comment: 7 pages, 8 figures, 1 tabl
- …
