2,806 research outputs found

    The curvature perturbation at second order

    Get PDF
    We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions

    Dominance of gauge artifact in the consistency relation for the primordial bispectrum

    Full text link
    The conventional cosmological perturbation theory has been performed under the assumption that we know the whole spatial region of the universe with infinite volume. This is, however, not the case in the actual observations because observable portion of the universe is limited. To give a theoretical prediction to the observable fluctuations, gauge-invariant observables should be composed of the information in our local observable universe with finite volume. From this point of view, we reexamine the primordial non-Gaussianity in single field models, focusing on the bispectrum in the squeezed limit. A conventional prediction states that the bispectrum in this limit is related to the power spectrum through the so-called consistency relation. However, it turns out that, if we adopt a genuine gauge invariant variable which is naturally composed purely of the information in our local universe, the leading term for the bispectrum in the squeezed limit predicted by the consistency relation vanishes.Comment: 12 pages; v2: accepted version in JCA

    General CMB bispectrum analysis using wavelets and separable modes

    Get PDF
    In this paper we combine partial-wave (`modal') methods with a wavelet analysis of the CMB bispectrum. Our implementation exploits the advantages of both approaches to produce robust, reliable and efficient estimators which can constrain the amplitude of arbitrary primordial bispectra. This will be particularly important for upcoming surveys such as \emph{Planck}. A key advantage is the computational efficiency of calculating the inverse covariance matrix in wavelet space, producing an error bar which is close to optimal. We verify the efficacy and robustness of the method by applying it to WMAP7 data, finding \fnllocal=38.4 \pm 23.6 and \fnlequil=-119.2 \pm 123.6

    The δN formula is the dynamical renormalization group

    Get PDF
    We derive the 'separate universe' method for the inflationary bispectrum, beginning directly from a field-theory calculation. We work to tree-level in quantum effects but to all orders in the slow-roll expansion, with masses accommodated perturbatively. Our method provides a systematic basis to account for novel sources of time-dependence in inflationary correlation functions, and has immediate applications. First, we use our result to obtain the correct matching prescription between the 'quantum' and 'classical' parts of the separate universe computation. Second, we elaborate on the application of this method in situations where its validity is not clear. As a by-product of our calculation we give the leading slow-roll corrections to the three-point function of field fluctuations on spatially flat hypersurfaces in a canonical, multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2: typographical typos fixed, minor changes to the main text and abstract, reference added; matches version published in JCA

    Primordial Trispectrum from Entropy Perturbations in Multifield DBI Model

    Full text link
    We investigate the primordial trispectra of the general multifield DBI inflationary model. In contrast with the single field model, the entropic modes can source the curvature perturbations on the super horizon scales, so we calculate the contributions from the interaction of four entropic modes mediating one adiabatic mode to the trispectra, at the large transfer limit (TRS1T_{RS}\gg1). We obtained the general form of the 4-point correlation functions, plotted the shape diagrams in two specific momenta configurations, "equilateral configuration" and "specialized configuration". Our figures showed that we can easily distinguish the two different momenta configurations.Comment: 17pages, 7 figures, version to appear in JCA
    corecore