805 research outputs found
Transient down-regulation of beta1 integrin subtypes on kidney carcinoma cells is induced by mechanical contact with endothelial cell membranes
Adhesion molecules of the integrin beta1 family are thought to be involved in the malignant progression renal cell carcinoma (RCC). Still, it is not clear how they contribute to this process. Since the hematogenous phase of tumour dissemination is the rate-limiting step in the metastatic process, we explored beta1 integrin alterations on several RCC cell lines (A498, Caki1, KTC26) before and after contacting vascular endothelium in a tumour-endothelium (HUVEC) co-culture assay. Notably, alpha2, alpha3 and alpha5 integrins became down-regulated immediately after the tumour cells attached to HUVEC, followed by re-expression shortly thereafter. Integrin down-regulation on RCC cells was caused by direct contact with endothelial cells, since the isolated endothelial membrane fragments but not the cell culture supernatant contributed to the observed effects. Integrin loss was accompanied by a reduced focal adhesion kinase (FAK) expression, FAK activity and diminished binding of tumour cells to matrix proteins. Furthermore, intracellular signalling proteins RCC cells were altered in the presence of HUVEC membrane fragments, in particular 14-3-3 epsilon, ERK2, PKCdelta, PKCepsilon and RACK1, which are involved in regulating tumour cell motility. We, therefore, speculate that contact of RCC cells with the vascular endothelium converts integrin-dependent adhesion to integrin-independent cell movement. The process of dynamic integrin regulation may be an important part in tumour cell migration strategy, switching the cells from being adhesive to becoming motile and invasive
Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations
Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and ngstrm exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy
Binding of Extracellular Maspin to 1 Integrins Inhibits Vascular Smooth Muscle Cell Migration
Maspin is a serpin that has multiple effects on cell behavior, including inhibition of migration. How maspin mediates these diverse effects remains unclear, as it is devoid of protease inhibitory activity. We have previously shown that maspin rapidly inhibits the migration of vascular smooth muscle cells (VSMC), suggesting the involvement of direct interactions with cell surface proteins. Here, using immunofluorescence microscopy, we demonstrate that maspin binds specifically to the surface of VSMC in the dedifferentiated, but not the differentiated, phenotype. Ligand blotting of VSMC lysates revealed the presence of several maspin-binding proteins, with a protein of 150 kDa differentially expressed between the two VSMC phenotypes. Western blotting suggested that this protein was the ß1 integrin subunit, and subsequently both a3ß1 and a5ß1, but not avß3, were shown to associate with maspin by coimmunoprecipitation. Specific binding of these integrins was also observed using maspin-affinity chromatography, using HT1080 cell lysates. Direct binding of maspin to a5ß1 was confirmed using a recombinant a5ß1-Fc fusion protein. Using conformation-dependent anti-ß1 antibodies, maspin binding to VSMC was found to lead to a decrease in the activation status of the integrin. The functional involvement of a5ß1 in mediating the effect of maspin was established by the inhibition of migration of CHO cells overexpressing human a5 integrin, but not those lacking a5 expression. Our observations suggest that maspin engages in specific interactions with a limited number of integrins on VSMC, leading to their inactivation, and that these interactions are responsible for the effects of maspin in the pericellular environment
Postlaunch Performance of the Suomi National Polar-Orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) Nadir Sensors
The prelaunch specifications for nadir sensors of the Ozone Mapping and Profiler Suite (OMPS) were designed to ensure that measurements from them could be used to retrieve total column ozone and nadir ozone profile information both for operational use and for use in long-term ozone data records. In this paper, we will show results from our extensive analysis of the performance of the nadir mapper (NM) and nadir profiler (NP) sensors during the first year and a half of OMPS nadir operations. In most cases, we determined that both sensors meet or exceed their prelaunch specifications. Normalized radiance (radiance divided by irradiance) measurements have been determined to be well within their 2% specification for both sensors. In the case of stray light, the NM sensor is within its 2% specification for all but the shortest wavelengths, while the NP sensor is within its 2% specification for all but the longest wavelengths. Artifacts that negatively impacted the sensor calibration due to diffuser features were reduced to less than 1% through changes made in the solar calibration sequence. Preliminary analysis of the disagreement between measurements made by the NM and NP sensors in the region where their wavelengths overlap indicates that it is due to shifts in the shared dichroic filter after launch and that it can be corrected. In general, our analysis indicates that both the NM and NP sensors are performing well, that they are stable, and that any deviations from nominal performance can be well characterized and corrected
Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation
The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas
Effects of Noninhibitory Serpin Maspin on the Actin Cytoskeleton: A Quantitative Image Modeling Approach
Recent developments in quantitative image analysis allow us to interrogate confocal microscopy images to answer biological questions. Clumped and layered cell nuclei and cytoplasm in confocal images challenges the ability to identify subcellular compartments. To date, there is no perfect image analysis method to identify cytoskeletal changes in confocal images. Here, we present a multidisciplinary study where an image analysis model was developed to allow quantitative measurements of changes in the cytoskeleton of cells with different maspin exposure. Maspin, a noninhibitory serpin influences cell migration, adhesion, invasion, proliferation, and apoptosis in ways that are consistent with its identification as a tumor metastasis suppressor. Using different cell types, we tested the hypothesis that reduction in cell migration by maspin would be reflected in the architecture of the actin cytoskeleton. A hybrid marker-controlled watershed segmentation technique was used to segment the nuclei, cytoplasm, and ruffling regions before measuring cytoskeletal changes. This was informed by immunohistochemical staining of cells transfected stably or transiently with maspin proteins, or with added bioactive peptides or protein. Image analysis results showed that the effects of maspin were mirrored by effects on cell architecture, in a way that could be described quantitatively
Computer simulation of glioma growth and morphology
Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion
NASA's Land, Atmosphere Near Real-Time Capability for EOS (LANCE): Delivering Data and Imagery to Meet the Needs of Near Real-Time Applications
NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) is a virtual system that provides near real-time EOS data and imagery from the AIRS, AMSR2, LIS (ISS), MISR, MLS, MODIS, MOPITT, OMI, OMPS, and VIIRS instruments, to meet the needs of scientists and application users interested in monitoring a wide variety of natural and man-made phenomena. NRT imagery from LANCE are available through NASA's Global Imagery Browse Services (GIBS), Worldview, FIRMS and most recently through Worldview Snapshots a low band width application that has replaced the Rapid Response Subsets. Over the past year: data and imagery from the Lightning Imaging Sensor (LIS) on board the International Space Station (ISS), OMPS and VIIRS-Land have been added to LANCE. In the coming year LANCE will integrate the MODIS NRT Global Flood product, VIIRS Black Marble nighttime lights and Cloud Mask and Aerosol Dark Target from VIIRS Atmosphere. Here we provide a brief overview of LANCE, focusing on what's new and describing how these new data sets have been used to monitor lightning flashes, hurricanes and fires. For more information on LANCE visit: https://earthdata.nasa.gov/lance
Cilengitide down-modulates invasiveness and vasculogenic mimicry of neuropilin-1 expressing melanoma cells through the inhibition of αvβ5 integrin.
During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvβ5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvβ5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανβ5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry
A new method for monitoring long term calibration of the SBUV and TOMS instruments
A new method has been developed to monitor the long-term calibration of the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments. It is based on the fact that the radiance in one channel can be expressed as a linear sum of the radiances in neighboring channels. Using simulated radiances for the SBUV and TOMS instruments, various scenarios of changes in instrument calibration are investigated. Results from sample processing of SBUV data are also presented
- …
