82 research outputs found
Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations
Cataloged from PDF version of article.In P3HT:PCBM based organic solar cells we propose and demonstrate numerically plasmonic backcontact grating architectures for strong optical absorption enhanced in both transverse-magnetic and transverse-electric polarizations. Even when the active material is partially replaced by the metallic grating (without increasing the active layer film thickness), we show computationally that the light absorption in thin-film P3HT:PCBM is increased by a maximum factor of similar to 21% considering both polarizations under AM1.5G solar radiation and over a half-maximum incidence angle of 45 degrees (where the enhancement drops to its half) compared to the same cell without a grating. This backcontact grating outperforms the typical plasmonic grating placed in PEDOT:PSS layer. (C)2011 Optical Society of America
Volumetric plasmonic resonator architecture for thin-film solar cells
Cataloged from PDF version of article.We propose and demonstrate a design concept of volumetric plasmonic resonators that relies on the idea of incorporating coupled layers of plasmonic structures embedded into a solar cell in enhanced optical absorption for surface-normal and off-axis angle configurations, beyond the enhancement limit of individual plasmonic layers. For a proof-of-concept demonstration in a thin-film organic solar cell that uses absorbing materials of copper phthalocyanine/perylene tetracarboxylic bisbenzimidazole, we couple two silver grating layers such that the field localization is further extended within the volume of active layers. Our computational results show a maximum optical absorption enhancement level of similar to 67% under air mass 1.5 global illumination considering both polarizations. (C) 2011 American Institute of Physics
Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots
Cataloged from PDF version of article.We propose and demonstrate a nanocomposite localized surface plasmon resonator
embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots
are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton
interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of
isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical
polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of
0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum
dot solids. Our electromagnetic simulation results are in good agreement with the experimental
characterization data showing a significant emission enhancement in the vertical polarization, for
which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our
unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great
promise for future exploitation and development of quantum dot plasmonic biophotonics and
quantum dot plasmonic optoelectronics
High index contrast passive potassium double tungstate waveguides
High-refractive-index-contrast potassium double tungstate waveguides have been experimentally demonstrated. A bulk KY(WO4)2 layer was successfully bonded onto a lower refractive index carrier using a UV curable optical adhesive and polished down to the thickness of 2.4 μm. A set of rib waveguides with ~2 μm width and 0.85 μm slab thickness were fabricated on the thin transferred KY(WO4)2 layer by focused-ion-beam milling. The upper-limit of the propagation losses of the fabricated waveguides is estimated to be 1.5 dB/cm at the wavelength of 1.55 μm using the Fabry-Perot method
Volumetric plasmonic resonator architecture for thin-film solar cells
We propose and demonstrate a design concept of volumetric plasmonic resonators that relies on the idea of incorporating coupled layers of plasmonic structures embedded into a solar cell in enhanced optical absorption for surface-normal and off-axis angle configurations, beyond the enhancement limit of individual plasmonic layers. For a proof-of-concept demonstration in a thin-film organic solar cell that uses absorbing materials of copper phthalocyanine/perylene tetracarboxylic bisbenzimidazole, we couple two silver grating layers such that the field localization is further extended within the volume of active layers. Our computational results show a maximum optical absorption enhancement level of ∼67% under air mass 1.5 global illumination considering both polarizations. © 2011 American Institute of Physics
Preface: the 2013 international workshop on optical wave and waveguide theory and numerical modelling
Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles
[No abstract available
Hybrid plasmonic cavity modes in arrays of gold nanotubes
Plasmonic structures are known to confine light at the nanometer scale, and they exhibit enhanced electromagnetic fields localized in small mode volumes. Here, plasmonic resonators based on a metamaterial consisting of periodic arrays of gold nanotubes embedded into anodic aluminum oxide are studied and strong confinement of local fields with low losses is demonstrated. Higher-order resonance modes of surface plasmons localized in gold nanotubes when the nanotube length exceeds some critical values are observed. The numerical simulations suggest that, the electric fields associated with some higher-order longitudinal modes for the long nanotubes and some lower-order longitudinal modes for the short nanotubes or the nanotubes with thin walls, are mainly localized at the interfaces between aluminum oxide and gold in the form of the standing-wave longitudinal plasmonic modes, partially localized in the pores and at two ends of the nanotubes owing to the strong coupling of the Fabry-Pérot resonances with extraordinary optical transmission effect in the periodical structures through the inner nanochannels of the nanotubes, so that the nanotubes play a role of efficient cavity resonators. The existence of hybrid plasmonic resonant cavity modes with asymmetrical distributions of the electric field resulting from the near-field coupling of both transversal and longitudinal modes in the gold nanotube metamaterials is revealed
Index Modulation Techniques for Energy-efficient Transmission in Large-scale MIMO Systems
This thesis exploits index modulation techniques to design energy- and spectrum-efficient system models to operate in future wireless networks. In this respect, index modulation techniques are studied considering two different media: mapping the information onto the frequency indices of multicarrier systems, and onto the antenna array indices of a platform that comprises multiple antennas.
The index modulation techniques in wideband communication scenarios considering orthogonal and generalized frequency division multiplexing systems are studied first. Single cell multiuser networks are considered while developing the system models that exploit the index modulation on the subcarriers of the multicarrier systems. Instead of actively modulating all the subcarriers, a subset is selected according to the index modulation bits. As a result, there are subcarriers that remain idle during the data transmission phase and the activation pattern of the subcarriers convey additional information.
The transceivers for the orthogonal and generalized frequency division multiplexing systems with index modulation are both designed considering the uplink and downlink transmission phases with a linear combiner and precoder in order to reduce the system complexity. In the developed system models, channel state information is required only at the base station. The linear combiner is designed adopting minimum mean square error method to mitigate the inter-user-interference. The proposed system models offer a flexible design as the parameters are independent of each other. The parameters can be adjusted to design the system in favor of the energy efficiency, spectrum efficiency, peak-to-average power ratio, or error performance.
Then, the index modulation techniques are studied for large-scale multiple-input multiple-output systems that operate in millimeter wave bands. In order to overcome the drawbacks of transmission in millimeter wave frequencies, channel properties should be taken in to account while envisaging the wireless communication network. The large-scale multiple-input multiple-output systems increase the degrees of freedom in the spatial domain. This feature can be exploited to focus the transmit power directly onto the intended receiver terminal to cope with the severe path-loss. However, scaling up the number of hardware elements results in excessive power consumption. Hybrid architectures provide a remedy by shifting a part of the signal processing to the analog domain. In this way, the number of bulky and high power consuming hardware elements can be reduced. However, there will be a performance degradation as a consequence of renouncing the fully digital signal processing. Index modulation techniques can be combined with the hybrid system architecture to compensate the loss in spectrum efficiency to further increase the data rates.
A user terminal architecture is designed that employs analog beamforming together with spatial modulation where a part of the information bits is mapped onto the indices of the antenna arrays. The system is comprised a switching stage that allocates the user terminal antennas on the phase shifter groups to minimize the spatial correlation, and a phase shifting stage that maximizes the beamforming gain to combat the path-loss. A computationally efficient optimization algorithm is developed to configure the system. The flexibility of the architecture enables optimization of the hybrid transceiver at any signal-to-noise ratio values.
A base station is designed in which hybrid beamforming together with spatial modulation is employed. The analog beamformer is designed to point the transmit beam only in the direction of the intended user terminal to mitigate leakage of the transmit power to other directions. The analog beamformer to transmit the signal is chosen based on the spatial modulation bits. The digital precoder is designed to eliminate the inter-user-interference by exploiting the zero-forcing method. The base station computes the hybrid beamformers and the digital combiners, and only feeds back the digital combiners of each antenna array-user pair to the related user terminals. Thus, a low complexity user architecture is sufficient to achieve a higher performance. The developed optimization framework for the energy efficiency jointly optimizes the number of served users and the total transmit power by utilizing the derived upper bound of the achievable rate. The proposed transceiver architectures provide a more energy-efficient system model compared to the hybrid systems in which the spatial modulation technique is not exploited.
This thesis develops low-complexity system models that operate in narrowband and wideband channel environments to meet the energy and spectrum efficiency demands of future wireless networks. It is corroborated in the thesis that adopting index modulation techniques both in the systems improves the system performance in various aspects.:1 Introduction 1
1.1 Motivation 1
1.2 Overview and Contribution 2
1.3 Outline 9
2 Preliminaries and Fundamentals 13
2.1 Multicarrier Systems 13
2.2 Large-scale Multiple Input Multiple Output Systems 17
2.3 Index Modulation Techniques 19
2.4 Single Cell Multiuser Networks 22
3 Multicarrier Systems with Index Modulation 27
3.1 Orthogonal Frequency Division Multiplexing 28
3.2 Generalized Frequency Division Multiplexing 40
3.3 Summary 52
4 Hybrid Beamforming with Spatial Modulation 55
4.1 Uplink Transmission 56
4.2 Downlink Transmission 74
4.3 Summary 106
5 Conclusion and Outlook 109
5.1 Conclusion 109
5.2 Outlook 111
A Quantization Error Derivations 113
B On the Achievable Rate of Gaussian Mixtures 115
B.1 The Conditional Density Function 115
B.2 Tight Bounds on the Differential Entropy 116
B.3 A Bound on the Achievable Rate 118
C Multiuser MIMO Downlink without Spatial Modulation 121
Bibliograph
- …
