286 research outputs found
Recommended from our members
A fixed-target platform for serial femtosecond crystallography in a hydrated environment.
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering
Use of partial least squares regression to impute SNP genotypes in Italian Cattle breeds
Background
The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used.
Methods
Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content.
Results
In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip.
Conclusions
Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available
Study of the structure and function of a novel bacterial virulence factor isolated from Francisella tularensis
- …
