991 research outputs found
Photoinduced Changes of Reflectivity in Single Crystals of YBa2Cu3O6.5 (Ortho II)
We report measurements of the photoinduced change in reflectivity of an
untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay
rate of the transient change in reflectivity is found to decrease rapidly with
decreasing temperature and, below Tc, with decreasing laser intensity. We
interpret the decay as a process of thermalization of antinodal quasiparticles,
whose rate is determined by an inelastic scattering rate of quasiparticle
pairs.Comment: 4 pages, 4 figure
Chaotic flow and efficient mixing in a micro-channel with a polymer solution
Microscopic flows are almost universally linear, laminar and stationary
because Reynolds number, , is usually very small. That impedes mixing in
micro-fluidic devices, which sometimes limits their performance. Here we show
that truly chaotic flow can be generated in a smooth micro-channel of a uniform
width at arbitrarily low , if a small amount of flexible polymers is added
to the working liquid. The chaotic flow regime is characterized by randomly
fluctuating three-dimensional velocity field and significant growth of the flow
resistance. Although the size of the polymer molecules extended in the flow may
become comparable with the micro-channel width, the flow behavior is fully
compatible with that in a table-top channel in the regime of elastic
turbulence. The chaotic flow leads to quite efficient mixing, which is almost
diffusion independent. For macromolecules, mixing time in this microscopic flow
can be three to four orders of magnitude shorter than due to molecular
diffusion.Comment: 8 pages,7 figure
Relaxation Dynamics of Photoinduced Changes in the Superfluid Weight of High-Tc Superconductors
In the transient state of d-wave superconductors, we investigate the temporal
variation of photoinduced changes in the superfluid weight. We derive the
formula that relates the nonlinear response function to the nonequilibrium
distribution function. The latter qunatity is obtained by solving the kinetic
equation with the electron-electron and the electron-phonon interaction
included. By numerical calculations, a nonexponential decay is found at low
temperatures in contrast to the usual exponential decay at high temperatures.
The nonexponential decay originates from the nonmonotonous temporal variation
of the nonequilibrium distribution function at low energies. The main physical
process that causes this behavior is not the recombination of quasiparticles as
previous phenomenological studies suggested, but the absorption of phonons.Comment: 18 pages, 12 figures; to be published in J. Phys. Soc. Jpn. Vol. 80,
No.
On the universality of the Discrete Nonlinear Schroedinger Equation
We address the universal applicability of the discrete nonlinear Schroedinger
equation. By employing an original but general top-down/bottom-up procedure
based on symmetry analysis to the case of optical lattices, we derive the most
widely applicable and the simplest possible model, revealing that the discrete
nonlinear Schroedinger equation is ``universally'' fit to describe light
propagation even in discrete tensorial nonlinear systems and in the presence of
nonparaxial and vectorial effects.Comment: 6 Pages, to appear in Phys. Rev.
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
The possible - mixing in QCD sum rules
We calculate the on-shell - mixing parameter with
the method of QCD sum rule. Our result is MeV. The electromagnetic interaction is not included
Fermion Doubling and a Natural Solution of the Strong CP Problem
We suggest the fermion doubling for all quarks and leptons. It is a
generalization of the neutrino doubling of the seesaw mechanism. The new quarks
and leptons are singlets and carry the electromagnetic charges of their
lighter counterparts. An {\it anomaly free global symmetry} or a
discrete symmetry can be introduced to restrict the Yukawa couplings. The form
of mass matrix is belonging to that of Nelson and Barr even though our model
does not belong to Barr's criterion. The weak CP violation of the
Kobayashi-Maskawa form is obtained through the spontaneous breaking of CP
symmetry at high energy scale. The strong CP solution is through a specific
form of the mass matrix. At low energy, the particle content is the same as in
the standard model. For a model with a global symmetry, in addition there
exists a massless majoron.Comment: SNUTP 93-68, 19 pages 1 TeX figure, ReVTeX 3.
Diffusion and viscosity in a supercooled polydisperse system
We have carried out extensive molecular dynamics simulations of a supercooled
polydisperse Lennard-Jones liquid with large variations in temperature at a
fixed pressure. The particles in the system are considered to be polydisperse
both in size and mass. The temperature dependence of the dynamical properties
such as the viscosity () and the self-diffusion coefficients () of
different size particles is studied. Both viscosity and diffusion coefficients
show super-Arrhenius temperature dependence and fit well to the well-known
Vogel-Fulcher-Tammann (VFT) equation. Within the temperature range
investigated, the value of the Angell's fragility parameter (D )
classifies the present system into a strongly fragile liquid. The critical
temperature for diffusion () increases with the size of the
particles. The critical temperature for viscosity () is larger than
that for the diffusion and a sizeable deviations appear for the smaller size
particles implying a decoupling of translational diffusion from viscosity in
deeply supercooled liquid. Indeed, the diffusion shows markedly non-Stokesian
behavior at low temperatures where a highly nonlinear dependence on size is
observed. An inspection of the trajectories of the particles shows that at low
temperatures the motions of both the smallest and largest size particles are
discontinuous (jump-type). However, the crossover from continuous Brownian to
large length hopping motion takes place at shorter time scales for the smaller
size particles.Comment: Revtex4, 7 pages, 8 figure
High field x-ray diffraction study on a magnetic-field-induced valence transition in YbInCu4
We report the first high-field x-ray diffraction experiment using synchrotron
x-rays and pulsed magnetic fields exceeding 30 T. Lattice deformation due to a
magnetic-field-induced valence transition in YbInCu4 is studied. It has been
found that the Bragg reflection profile at 32 K changes significantly at around
27 T due to the structural transition. In the vicinity of the transition field
the low-field and the high-field phases are observed simultaneously as the two
distinct Bragg reflection peaks: This is a direct evidence of the fact that the
field-induced valence state transition is the first order phase transition. The
field-dependence of the low-field-phase Bragg peak intensity is found to be
scaled with the magnetization.Comment: 5 pages, 6 figures, submitted to J. Phys. Soc. Jp
- …
