662 research outputs found

    Crystallization of Carbon Oxygen Mixtures in White Dwarf Stars

    Full text link
    We determine the phase diagram for dense carbon/ oxygen mixtures in White Dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12^{12}C(α,γ\alpha,\gamma)16^{16}O reaction to S_{300} <= 170 keV barns.Comment: 4 pages, 2 figures, Phys. Rev. Lett. in pres

    Contribution of brown dwarfs and white dwarfs to recent microlensing observations and to the halo mass budget

    Get PDF
    We examine the recent results of the MACHO collaboration towards the Large Magellanic Cloud (Alcock et al. 1996) in terms of a halo brown dwarf or white dwarf population. The possibility for most of the microlensing events to be due to brown dwarfs is totally excluded by large-scale kinematic properties. The white dwarf scenario is examined in details in the context of the most recent white dwarf cooling theory (Segretain et al. 1994) which includes explicitely the extra source of energy due to carbon-oxygen differentiation at crystallization, and the subsequent Debye cooling. We show that the observational constraints arising from the luminosity function of high-velocity white dwarfs in the solar neighborhood and from the recent HST deep field counts are consistent with a white dwarf contribution to the halo missing mass as large as 50 %, provided i) an IMF strongly peaked around 1.7 Msol and ii) a halo age older than 18 Gyr.Comment: 14 pages, 2 Postscript figures, to be published in Astrophysical Journal Letters, minor revision in tex

    Crystallization of classical multi-component plasmas

    Full text link
    We develop a method for calculating the equilibrium properties of the liquid-solid phase transition in a classical, ideal, multi-component plasma. Our method is a semi-analytic calculation that relies on extending the accurate fitting formulae available for the one-, two-, and three-component plasmas to the case of a plasma with an arbitrary number of components. We compare our results to those of Horowitz, Berry, & Brown (Phys. Rev. E, 75, 066101, 2007), who use a molecular dynamics simulation to study the chemical properties of a 17-species mixture relevant to the ocean-crust boundary of an accreting neutron star, at the point where half the mixture has solidified. Given the same initial composition as Horowitz et al., we are able to reproduce to good accuracy both the liquid and solid compositions at the half-freezing point; we find abundances for most species within 10% of the simulation values. Our method allows the phase diagram of complex mixtures to be explored more thoroughly than possible with numerical simulations. We briefly discuss the implications for the nature of the liquid-solid boundary in accreting neutron stars.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    Pulsations of massive ZZ Ceti stars with carbon/oxygen and oxygen/neon cores

    Get PDF
    We explore the adiabatic pulsational properties of massive white dwarf stars with hydrogen-rich envelopes and oxygen/neon and carbon/oxygen cores. To this end, we compute the cooling of massive white dwarf models for both core compositions taking into account the evolutionary history of the progenitor stars and the chemical evolution caused by time-dependent element diffusion. In particular, for the oxygen/neon models, we adopt the chemical profile resulting from repeated carbon-burning shell flashes expected in very massive white dwarf progenitors. For carbon/oxygen white dwarfs we consider the chemical profiles resulting from phase separation upon crystallization. For both compositions we also take into account the effects of crystallization on the oscillation eigenmodes. We find that the pulsational properties of oxygen/neon white dwarfs are notably different from those made of carbon/oxygen, thus making asteroseismological techniques a promising way to distinguish between both types of stars and, hence, to obtain valuable information about their progenitors.Comment: 11 pages, including 11 postscript figures. Accepted for publication in Astronomy and Astrophysic

    Diffusion of Neon in White Dwarf Stars

    Full text link
    Sedimentation of the neutron rich isotope 22^{22}Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22^{22}Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants DiD_i from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that DiD_i in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ>\Gamma> few), DiD_i has a modest dependence on the charge ZiZ_i of the ion species, DiZi2/3D_i \propto Z_i^{-2/3}. However DiD_i depends more strongly on ZiZ_i for weak coupling (smaller Γ\Gamma). We conclude that the self-diffusion constant DNeD_{\rm Ne} for 22^{22}Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in DNeD_{\rm Ne} should be unimportant for simulations of white dwarf cooling.Comment: 6 pages, 5 figures, minor changes, Phys. Rev. E in pres

    Phase separation in the crust of accreting neutron stars

    Get PDF
    Nucleosynthesis, on the surface of accreting neutron stars, produces a range of chemical elements. We perform molecular dynamics simulations of crystallization to see how this complex composition forms new neutron star crust. We find chemical separation, with the liquid ocean phase greatly enriched in low atomic number elements compared to the solid crust. This phase separation should change many crust properties such as the thermal conductivity and shear modulus. The concentration of carbon, if present, is enriched in the ocean. This may allow unstable thermonuclear burning of the carbon and help explain the ignition of the very energetic explosions known as superbursts.Comment: 8 pages, 6 figures, minor changes, Physical Review E in pres

    Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion

    Get PDF
    Motivated by the strong discrepancy between the main sequence turn-off age and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we compute a grid of white dwarf evolutionary sequences that incorporates for the first time the energy released by the processes of 22Ne sedimentation and of carbon/oxygen phase separation upon crystallization. The grid covers the mass range from 0.52 to 1.0 Msun, and it is appropriate for the study of white dwarfs in metal-rich clusters. The evolutionary calculations are based on a detailed and self-consistent treatment of the energy released from these two processes, as well as on the employment of realistic carbon/oxygen profiles, of relevance for an accurate evaluation of the energy released by carbon/oxygen phase separation. We find that 22Ne sedimentation strongly delays the cooling rate of white dwarfs stemming from progenitors with high metallicities at moderate luminosities, whilst carbon/oxygen phase separation adds considerable delays at low luminosities. Cooling times are sensitive to possible uncertainties in the actual value of the diffusion coefficient of 22Ne. Changing the diffusion coefficient by a factor of 2, leads to maximum age differences of approx. 8-20% depending on the stellar mass. We find that the magnitude of the delays resulting from chemical changes in the core is consistent with the slow down in the white dwarf cooling rate that is required to solve the age discrepancy in NGC 6791.Comment: 10 pages, 6 figures, to be published in The Astrophysical Journa

    Surface Detonations in Double Degenerate Binary Systems Triggered by Accretion Stream Instabilities

    Full text link
    We present three-dimensional simulations on a new mechanism for the detonation of a sub-Chandrasekhar CO white dwarf in a dynamically unstable system where the secondary is either a pure He white dwarf or a He/CO hybrid. For dynamically unstable systems where the accretion stream directly impacts the surface of the primary, the final tens of orbits can have mass accretion rates that range from 10510^{-5} to 103M10^{-3} M_{\odot} s1^{-1}, leading to the rapid accumulation of helium on the surface of the primary. After 102\sim 10^{-2} MM_{\odot} of helium has been accreted, the ram pressure of the hot helium torus can deflect the accretion stream such that the stream no longer directly impacts the surface. The velocity difference between the stream and the torus produces shearing which seeds large-scale Kelvin-Helmholtz instabilities along the interface between the two regions. These instabilities eventually grow into dense knots of material that periodically strike the surface of the primary, adiabatically compressing the underlying helium torus. If the temperature of the compressed material is raised above a critical temperature, the timescale for triple-α\alpha reactions becomes comparable to the dynamical timescale, leading to the detonation of the primary's helium envelope. This detonation drives shockwaves into the primary which tend to concentrate at one or more focal points within the primary's CO core. If a relatively small amount of mass is raised above a critical temperature and density at these focal points, the CO core may itself be detonated.Comment: 6 pages, 4 figures, 1 table. Submitted to ApJL. For a high-resolution version, movies, and other supporting material see http://www.ucolick.org/~jfg/projects/double-white-dwarf-accretion
    corecore