15 research outputs found

    J-PARCにおけるベータ崩壊の計数による中性子寿命の測定

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 齊藤 直人, 東京大学教授 小関 忠, 東京大学教授 酒見 泰寛, 東京大学准教授 森松 治, 東京大学教授 駒宮 幸男University of Tokyo(東京大学

    Accurate determination of the absolute 3He/4He ratio of a synthesized helium standard gas (Helium Standard of Japan, HESJ): Towards revision of the atmospheric 3He/4He ratio

    Full text link
    The helium standard of Japan, referred to as HESJ, is an inter-laboratory standard for the 3He/4He ratio. While the ratio of 3He and 4He of the HESJ was previously determined by a relative comparison to atmospheric helium, the absolute value of the 3He/4He ratio of the HESJ has not been directly determined yet. Therefore, it relies on the early measurements of that of atmospheric helium. The accuracy of the absolute 3He/4He ratios of the atmosphere and other working standards including HESJ is crucial in some applications of helium isotopes, such as tritium-3He dating, surface-exposure age determination based on cosmogenic 3He, and the accurate measurement of the neutron lifetime. In this work, new control samples of helium gases with 3He/4He ratios of 14, 28, and 42 ppm were fabricated with accuracy of 0.25-0.38% using a gas-handling system for a neutron lifetime experiment at Japan Proton Accelerator Research Complex (J-PARC). The relative 3He/4He ratios of these samples and the HESJ were measured using a magnetic-sector-type, single-focusing, noble gas mass spectrometer with a double collector system. As a result, the absolute 3He/4He ratio of the HESJ was determined as 27.36 +/- 0.11 ppm. The atmospheric 3He/4He ratio was determined as 1.340 +/- 0.006 ppm, based on this work.Comment: 18 pages, 8 figures, 4 table

    Development of ultra-low mass and high-rate capable RPC based on Diamond-Like Carbon electrodes for MEG II experiment

    Full text link
    A new type of resistive plate chamber with thin-film electrodes based on diamond-like carbon is under development for background identification in the MEG II experiment. Installed in a low-momentum and high-intensity muon beam, the detector is required to have extremely low mass and a high rate capability. A single-layer prototype detector with 2 cm ×\times 2 cm size was constructed and evaluated to have a high rate capability of 1 MHz/cm2^2 low-momentum muons. For a higher rate capability and scalability of the detector size, the electrodes to supply high voltage was segmented by implementing a conductive pattern on diamond-like carbon. Using the new electrodes, a four-layer prototype detector was constructed and evaluated to have a 46% detection efficiency with only a single layer active at a rate of O\cal O(10 kHz). The result is promising to achieve the required detection efficiency of 90% at a rate of 4 MHz/cm2^2 with all the layers active.Comment: 5 pages, 8 figures. Contribution to XVI Workshop on Resistive Plate Chambers and Related Detectors (RPC2022), September 26-30 2022. Submitted to Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipmen

    Fundamental physics activities with pulsed neutron at J-PARC(BL05)

    Full text link
    "Neutron Optics and Physics (NOP/ BL05)" at MLF in J-PARC is a beamline for studies of fundamental physics. The beamline is divided into three branches so that different experiments can be performed in parallel. These beam branches are being used to develop a variety of new projects. We are developing an experimental project to measure the neutron lifetime with total uncertainty of 1 s (0.1%). The neutron lifetime is an important parameter in elementary particle and astrophysics. Thus far, the neutron lifetime has been measured by several groups; however, different values are obtained from different measurement methods. This experiment is using a method with different sources of systematic uncertainty than measurements conducted to date. We are also developing a source of pulsed ultra-cold neutrons (UCNs) produced from a Doppler shifter are available at the unpolarized beam branch. We are developing a time focusing device for UCNs, a so called "rebuncher", which can increase UCN density from a pulsed UCN source. At the low divergence beam branch, an experiment to search an unknown intermediate force with nanometer range is performed by measuring the angular dependence of neutron scattering by noble gases. Finally the beamline is also used for the research and development of optical elements and detectors. For example, a position sensitive neutron detector that uses emulsion to achieve sub-micrometer resolution is currently under development. We have succeeded in detecting cold and ultra-cold neutrons using the emulsion detector.Comment: 9 pages, 5 figures, Proceedings of International Conference on Neutron Optics (NOP2017

    Simulation study of cosmic-ray muon backgrounds for KamLAND-Zen experiment

    No full text
    Abstract Neutrino is a major candidate of Majorana particle and the neutrinoless double beta (0v2β) decay is the key physics to prove it. In 2019, KamLAND-Zen experiment have started data taking to search for 0v2β decay with 745 kg of 136Xe as the source. The sensitivity is restricted by the statistics of backgrounds and the most critical ones are induced by spallation reactions of cosmic-ray muons. Physics process and statistics are studied with FLUKA which is widely used simulation tool. The most critical background is the decay of 10C, while FLUKA predicts that heavy isotopes such as 137Xe can be a potential background. We apply delayed coincidence method to quantify those backgrounds and also have been developing new tools focused on space and charge features, pulse shape discrimination and particle identification.</jats:p

    SUMMER STUDENT WORK PROJECT REPORT Measurement of the sensitivity of emulsion film in low temperature

    No full text
    AEGIS experiment aims to measure the gravitational acceleration for antihydrogen. High position resolution detector which can be used in low temperature is needed and one of the candidate is emulsion detector. We have prepared a variable temperature cryostat and measure the relation between sensitivity of emulsion film and temperature

    Precise Neutron Lifetime Experiment Using Pulsed Neutron Beams At J-PARC

    No full text
    The neutron lifetime is one of the basic parameters in the weak interaction, and is used for predicting the light element abundance in the early universe. Our group developed a new setup to measure the lifetime with the goal precision of 0.1% at the polarized beam branch BL05 of MLF, J-PARC. The commissioning data was acquired in 2014 and 2015, and the first set of data to evaluate the lifetime in 2016, which is expected to yield a statistical uncertainty of O(1)%. This paper presents the current analysis results and the future plans to achieve our goal precision.Comment: 8 pages, 7 figures, 2 tables, the 26th International Nuclear Physics Conferenc

    New project for precise neutron lifetime measurement at J-PARC

    No full text
    The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO2gas, including a well-controlled amount of3He, is used for detection of the beta-decays and simultaneous determination of the beam intensity. Using the data between 2014 and 2016, we evaluated our first, preliminary result of the neutron lifetime as 896 ± 10(stat.)−10+14(sys.) s. We plan several upgrades to achieve our precision goal of 1 s.</jats:p

    New project for precise neutron lifetime measurement at J-PARC

    No full text
    The decay lifetime of free neutrons (∼880 s) is an important parameter of the weak interaction and for Big Bang Nucleosynthesis. However, results of measurements currently show discrepancies depending on the method used. As most experiments nowadays employ ultra cold neutrons, we have developed a new cold-beam experiment which we perform at the Japan Proton Accelerator Research Complex. As a special feature, a polarized neutron beam is bunched by a spin flip chopper. A time projection chamber operated with He and CO2 gas, including a well-controlled amount of 3He, is used for detection of the beta-decays and simultaneous determination of the beam intensity. Using the data between 2014 and 2016, we evaluated our first, preliminary result of the neutron lifetime as 896 ± 10(stat.) −10+14(sys.) s. We plan several upgrades to achieve our precision goal of 1 s
    corecore