1,826 research outputs found

    Closure of a human tissue biobank: Individual, institutional, and field expectations during cycles of promise and disappointment

    Get PDF
    Biobanks are increasingly being established to act as mediators between patient-donors and researchers. In practice, some of these will close. This paper details the experiences of one such bank. We report interviews with the bank's staff and oversight group during the period when the bank ceased biobanking activity, reconfigured as a disseminator of best practice, before then closing altogether. The paper makes three distinct contributions: (i) to provide a detailed account of the establishment, operational challenges, and eventual closure of the bank, which makes clear the rapid turnover in a cycle of promise and disappointment; (ii) to explore this in terms of a novel analytical focus upon field, institutional, and individual expectations; and (iii) to use this typology to demonstrate how, even after the bank's closure, aspects of its work were reconfigured and reused in new contexts. This provides a unique empirical analysis of the under-reported issue of biobank closure.The Cesagen journal club and an anonymous reviewe

    A Low Noise Thermometer Readout for Ruthenium Oxide Resistors

    Get PDF
    The thermometer and thermal control system, for the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) experiment, is described, including the design, testing, and results from the first flight of ARCADE. The noise is equivalent to about 1 Omega or 0.15 mK in a second for the RuO_2 resistive thermometers at 2.7 K. The average power dissipation in each thermometer is 1 nW. The control system can take full advantage of the thermometers to maintain stable temperatures. Systematic effects are still under investigation, but the measured precision and accuracy are sufficient to allow measurement of the cosmic background spectrum. Journal-ref: Review of Scientific Instruments Vol 73 #10 (Oct 2002)Comment: 5 pages text 7 figure

    Prime focus spectrograph: Subaru's future

    Get PDF
    The Prime Focus Spectrograph (PFS) of the Subaru Measurement of Images and Redshifts (SuMIRe) project has been endorsed by Japanese community as one of the main future instruments of the Subaru 8.2-meter telescope at Mauna Kea, Hawaii. This optical/near-infrared multi-fiber spectrograph targets cosmology with galaxy surveys, Galactic archaeology, and studies of galaxy/AGN evolution. Taking advantage of Subaru’s wide field of view, which is further extended with the recently completed Wide Field Corrector, PFS will enable us to carry out multi-fiber spectroscopy of 2400 targets within 1.3 degree diameter. A microlens is attached at each fiber entrance for F-ratio transformation into a larger one so that difficulties of spectrograph design are eased. Fibers are accurately placed onto target positions by positioners, each of which consists of two stages of piezo-electric rotary motors, through iterations by using back-illuminated fiber position measurements with a widefield metrology camera. Fibers then carry light to a set of four identical fast-Schmidt spectrographs with three color arms each: the wavelength ranges from 0.38 μm to 1.3 μm will be simultaneously observed with an average resolving power of 3000. Before and during the era of extremely large telescopes, PFS will provide the unique capability of obtaining spectra of 2400 cosmological/astrophysical targets simultaneously with an 8-10 meter class telescope. The PFS collaboration, led by IPMU, consists of USP/LNA in Brazil, Caltech/JPL, Princeton, and JHU in USA, LAM in France, ASIAA in Taiwan, and NAOJ/Subaru

    Prime Focus Spectrograph for the Subaru telescope: massively multiplexed optical and near-infrared fiber spectrograph

    Get PDF
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38  μm to 1.26  μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71  μm to 0.89  μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase

    ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission

    Get PDF
    The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument designed to measure the temperature of the cosmic microwave background at centimeter wavelengths. ARCADE searches for deviations from a blackbody spectrum resulting from energy releases in the early universe. Long-wavelength distortions in the CMB spectrum are expected in all viable cosmological models. Detecting these distortions or showing that they do not exist is an important step for understanding the early universe. We describe the ARCADE instrument design, current status, and future plans.Comment: 12 pages, 6 figures. Proceedings of the Fundamental Physics With CMB workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy Review

    CMB component separation by parameter estimation

    Get PDF
    We propose a solution to the CMB component separation problem based on standard parameter estimation techniques. We assume a parametric spectral model for each signal component, and fit the corresponding parameters pixel by pixel in a two-stage process. First we fit for the full parameter set (e.g., component amplitudes and spectral indices) in low-resolution and high signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each parameter, and the associated uncertainty. The goodness-of-fit is evaluated by a chi^2 statistic. Then we fix all non-linear parameters at their low-resolution best-fit values, and solve analytically for high-resolution component amplitude maps. This likelihood approach has many advantages: The fitted model may be chosen freely, and the method is therefore completely general; all assumptions are transparent; no restrictions on spatial variations of foreground properties are imposed; the results may be rigorously monitored by goodness-of-fit tests; and, most importantly, we obtain reliable error estimates on all estimated quantities. We apply the method to simulated Planck and six-year WMAP data based on realistic models, and show that separation at the muK level is indeed possible in these cases. We also outline how the foreground uncertainties may be rigorously propagated through to the CMB power spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p
    corecore