1,757 research outputs found
A Low Noise Thermometer Readout for Ruthenium Oxide Resistors
The thermometer and thermal control system, for the Absolute Radiometer for
Cosmology, Astrophysics, and Diffuse Emission (ARCADE) experiment, is
described, including the design, testing, and results from the first flight of
ARCADE. The noise is equivalent to about 1 Omega or 0.15 mK in a second for the
RuO_2 resistive thermometers at 2.7 K. The average power dissipation in each
thermometer is 1 nW. The control system can take full advantage of the
thermometers to maintain stable temperatures. Systematic effects are still
under investigation, but the measured precision and accuracy are sufficient to
allow measurement of the cosmic background spectrum.
Journal-ref: Review of Scientific Instruments Vol 73 #10 (Oct 2002)Comment: 5 pages text 7 figure
ARCADE: Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
(ARCADE) is a balloon-borne instrument designed to measure the temperature of
the cosmic microwave background at centimeter wavelengths. ARCADE searches for
deviations from a blackbody spectrum resulting from energy releases in the
early universe. Long-wavelength distortions in the CMB spectrum are expected in
all viable cosmological models. Detecting these distortions or showing that
they do not exist is an important step for understanding the early universe. We
describe the ARCADE instrument design, current status, and future plans.Comment: 12 pages, 6 figures. Proceedings of the Fundamental Physics With CMB
workshop, UC Irvine, March 23-25, 2006, to be published in New Astronomy
Review
Cosmic shear requirements on the wavelength dependence of telescope point spread functions
Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometr
Traversed Graph Representation for Sparse Encoding of Macro-Reentrant Tachycardia
© Springer International Publishing Switzerland 2016.Macro-reentrant atrial and ventricular tachycardias originate from additional circuits in which the activation of the cardiac chambers follows a high-frequency rotating pattern. The macro-reentrant circuit can be interrupted by targeted radiofrequency energy delivery with a linear lesion transecting the pathway. The choice of the optimal ablation site is determined by the operator’s experience, thus limiting the procedure success, increasing its duration and also unnecessarily extending the ablated tissue area in the case of incorrect ablation target estimation. In this paper, an algorithm for automatic intraoperative detection of the tachycardia reentry path is proposed by modelling the propagation as a graph traverse problem. Moreover, the optimal ablation point where the path should be transected is computed. Finally, the proposed method is applied to sparse electroanatomical data to demonstrate its use when undersampled mapping occurs. Thirteen electroanatomical maps of right ventricle and right and left atrium tachycardias from patients treated for congenital heart disease were analysed retrospectively in this study, with prediction accuracy tested against the recorded ablation sites and arrhythmia termination points
CMB component separation by parameter estimation
We propose a solution to the CMB component separation problem based on
standard parameter estimation techniques. We assume a parametric spectral model
for each signal component, and fit the corresponding parameters pixel by pixel
in a two-stage process. First we fit for the full parameter set (e.g.,
component amplitudes and spectral indices) in low-resolution and high
signal-to-noise ratio maps using MCMC, obtaining both best-fit values for each
parameter, and the associated uncertainty. The goodness-of-fit is evaluated by
a chi^2 statistic. Then we fix all non-linear parameters at their
low-resolution best-fit values, and solve analytically for high-resolution
component amplitude maps. This likelihood approach has many advantages: The
fitted model may be chosen freely, and the method is therefore completely
general; all assumptions are transparent; no restrictions on spatial variations
of foreground properties are imposed; the results may be rigorously monitored
by goodness-of-fit tests; and, most importantly, we obtain reliable error
estimates on all estimated quantities. We apply the method to simulated Planck
and six-year WMAP data based on realistic models, and show that separation at
the muK level is indeed possible in these cases. We also outline how the
foreground uncertainties may be rigorously propagated through to the CMB power
spectrum and cosmological parameters using a Gibbs sampling technique.Comment: 20 pages, 10 figures, submitted to ApJ. For a high-resolution
version, see http://www.astro.uio.no/~hke/docs/eriksen_et_al_fgfit.p
Extragalactic Science, Cosmology and Galactic Archaeology with the Subaru Prime Focus Spectrograph (PFS)
The Subaru Prime Focus Spectrograph (PFS) is a massively-multiplexed
fiber-fed optical and near-infrared 3-arm spectrograph (N_fiber=2400,
380<lambda<1260nm, 1.3 degree diameter FoV), offering unique opportunities in
survey astronomy. Here we summarize the science case feasible for a survey of
Subaru 300 nights. We describe plans to constrain the nature of dark energy via
a survey of emission line galaxies spanning a comoving volume of 9.3 (Gpc/h)^3
in the redshift range 0.8<z<2.4. In each of 6 redshift bins, the cosmological
distances will be measured to 3% precision via BAO, and redshift-space
distortions will be used to constrain structure growth to 6% precision. In the
GA program, radial velocities and chemical abundances of stars in the Milky Way
and M31 will be used to infer the past assembly histories of spiral galaxies
and the structure of their dark matter halos. Data will be secured for 10^6
stars in the Galactic thick-disk, halo and tidal streams as faint as V~22,
including stars with V < 20 to complement the goals of the Gaia mission. A
medium-resolution mode with R = 5000 to be implemented in the red arm will
allow the measurement of multiple alpha-element abundances and more precise
velocities for Galactic stars, elucidating the detailed chemo-dynamical
structure and evolution of each of the main stellar components of the Milky Way
Galaxy and of its dwarf spheroidal galaxies. For the extragalactic program, our
simulations suggest the wide avelength range will be powerful in probing the
galaxy population and its clustering over a wide redshift range. We propose to
conduct a color-selected survey of 1<z<2 galaxies and AGN over 16 deg^2 to
J~23.4, yielding a fair sample of galaxies with stellar masses above ~10^{10}Ms
at z~2. A two-tiered survey of higher redshift LBGs and LAEs will quantify the
properties of early systems close to the reionization epoch.Comment: This document describes the scientific program and requirements for
the Subaru Prime Focus Spectrograph (PFS) project. Made significant revision
based on studies for the Preliminary Design Review (PRD) held in Feb 2013.
The higher-resolution paper file is available from
http://member.ipmu.jp/masahiro.takada/pfs_astroph_rv.pd
ARCADE 2 Observations of Galactic Radio Emission
We use absolutely calibrated data from the ARCADE 2 flight in July 2006 to
model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure
in the data is consistent with a superposition of free-free and synchrotron
emission. Emission with spatial morphology traced by the Haslam 408 MHz survey
has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission
contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest
ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the
polar caps using either a simple plane-parallel model with csc|b| dependence or
a model of high-latitude radio emission traced by the COBE/FIRAS map of CII
emission. Both methods are consistent with a single power-law over the
frequency range 22 MHz to 10 GHz, with total Galactic emission towards the
north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/-
0.03 at reference frequency 1 GHz. The well calibrated ARCADE 2 maps provide a
new test for spinning dust emission, based on the integrated intensity of
emission from the Galactic plane instead of cross-correlations with the thermal
dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is
fainter than predicted by models without spinning dust, and is consistent with
spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 22
GHz.Comment: 10 poges, 9 figures. Submitted to The Astrophysical Journa
The Temperature of the CMB at 10 GHz
We report the results of an effort to measure the low frequency portion of
the spectrum of the Cosmic Microwave Background Radiation (CMB), using a
balloon-borne instrument called ARCADE (Absolute Radiometer for Cosmology,
Astrophysics, and Diffuse Emission). These measurements are to search for
deviations from a thermal spectrum that are expected to exist in the CMB due to
various processes in the early universe. The radiometric temperature was
measured at 10 and 30 GHz using a cryogenic open-aperture instrument with no
emissive windows. An external blackbody calibrator provides an in situ
reference. A linear model is used to compare the radiometer output to a set of
thermometers on the instrument. The unmodeled residuals are less than 50 mK
peak-to-peak with a weighted RMS of 6 mK. Small corrections are made for the
residual emission from the flight train, atmosphere, and foreground Galactic
emission. The measured radiometric temperature of the CMB is 2.721 +/- 0.010 K
at 10 GHz and 2.694 +/- 0.032 K at 30 GHz.Comment: 8 pages including 5 figures. Submitted to The Astrophysical Journa
- …
