266 research outputs found
Separated cross sections in \pi^0 electroproduction at threshold at Q^2 = 0.05 GeV^2/c^2
The differential cross sections \sigma_0=\sigma_T+\epsilon \sigma_L,
\sigma_{LT}, and \sigma_{TT} of \pi^0 electroproduction from the proton were
measured from threshold up to an additional center of mass energy of 40 MeV, at
a value of the photon four-momentum transfer of Q^2= 0.05 GeV^2/c^2 and a
center of mass angle of \theta=90^\circ. By an additional out-of-plane
measurement with polarized electrons \sigma_{LT'} was determined. This showed
for the first time the cusp effect above the \pi^+ threshold in the imaginary
part of the s-wave. The predictions of Heavy Baryon Chiral Perturbation Theory
are in disagreement with these data. On the other hand, the data are somewhat
better predicted by the MAID phenomenological model and are in good agreement
with the dynamical model DMT.Comment: 6 pages, 4 figure
Lowest Q^2 Measurement of the gamma*p -> Delta Reaction: Probing the Pionic Contribution
To determine nonspherical angular momentum amplitudes in hadrons at long
ranges (low Q^2), data were taken for the p(\vec{e},e'p)\pi^0 reaction in the
Delta region at Q^2=0.060 (GeV/c)^2 utilizing the magnetic spectrometers of the
A1 Collaboration at MAMI. The results for the dominant transition magnetic
dipole amplitude and the quadrupole to dipole ratios at W=1232 MeV are:
M_{1+}^{3/2} = (40.33 +/- 0.63_{stat+syst} +/- 0.61_{model})
(10^{-3}/m_{\pi^+}),Re(E_{1+}^{3/2}/M_{1+}^{3/2}) = (-2.28 +/- 0.29_{stat+syst}
+/- 0.20_{model})%, and Re(S_{1+}^{3/2}/M_{1+}^{3/2}) = (-4.81 +/-
0.27_{stat+syst} +/- 0.26_{model})%. These disagree with predictions of
constituent quark models but are in reasonable agreement with lattice
calculations with non-linear (chiral) pion mass extrapolations, with chiral
effective field theory, and with dynamical models with pion cloud effects.
These results confirm the dominance, and general Q^2 variation, of the pionic
contribution at large distances.Comment: 6 pages, 3 figures, 1 tabl
Measurement of the LT-asymmetry in \pi^0 electroproduction at the energy of the \Delta (1232) resonance
The reaction p(e,e'p)pi^0 has been studied at Q^2=0.2 (GeV/c)^2 in the region
of W=1232 MeV. From measurements left and right of q, cross section asymmetries
\rho_LT have been obtained in forward kinematics \rho_LT(\theta_\pi^0=20deg) =
(-11.68 +/- 2.36_stat +/- 2.36_sys)$ and backward kinematics
\rho_LT(\theta_\pi^0=160deg) =(12.18 +/- 0.27_stat +/- 0.82_sys). Multipole
ratios \Re(S_1+^* M_1+)/|M_1+|^2 and \Re(S_0+^* M_1+)/|M_1+|^2 were determined
in the framework of the MAID2003 model. The results are in agreement with older
data. The unusally strong negative \Re(S_0+^* M_1+)/|M_1+|^2 required to bring
also the result of Kalleicher et al. in accordance with the rest of the data is
almost excluded.Comment: 7 pages, 7 figures, 4 tables. Changed content. Accepted for
publication in EPJ
Self energies of the pion and the delta isobar from the ^3He(e,e'pi^+)^3H reaction
In a kinematically complete experiment at the Mainz microtron MAMI, pion
angular distributions of the He(e,e'H reaction have been measured
in the excitation region of the resonance to determine the
longitudinal (), transverse (), and the interference part of the
differential cross section. The data are described only after introducing
self-energy modifications of the pion and -isobar propagators. Using
Chiral Perturbation Theory (ChPT) to extrapolate the pion self energy as
inferred from the measurement on the mass shell, we deduce a reduction of the
mass of MeV/c in the
neutron-rich nuclear medium at a density of fm. Our data are consistent with the self energy
determined from measurements of photoproduction from He and heavier
nuclei.Comment: Elsart, 12 pages and 4 figures, Correspondent: Professor Dr. Dr. h.c.
mult. Achim Richter, [email protected], submitted to Phys. Rev.
Let
Measurements of the \gamma * p --> \Delta(1232) reaction at low Q2
We report new p measurements in the
resonance at the low momentum transfer region utilizing the
magnetic spectrometers of the A1 Collaboration at MAMI. The mesonic cloud
dynamics are predicted to be dominant and appreciably changing in this region
while the momentum transfer is sufficiently low to be able to test chiral
effective calculations. The results disagree with predictions of constituent
quark models and are in reasonable agreement with dynamical calculations with
pion cloud effects, chiral effective field theory and lattice calculations. The
reported measurements suggest that improvement is required to the theoretical
calculations and provide valuable input that will allow their refinements
Polarization transfer in the HeH reaction
Polarization transfer in the 4He(e,e'p)3H reaction at a Q^2 of 0.4 (GeV/c)^2
was measured at the Mainz Microtron MAMI. The ratio of the transverse to the
longitudinal polarization components of the ejected protons was compared with
the same ratio for elastic ep scattering. The results are consistent with a
recent fully relativistic calculation which includes a predicted medium
modification of the proton form factor based on a quark-meson coupling model.Comment: 5 pages, Latex, 2 postscript figures, submitted to Physics Letters
A new measurement of the structure functions and in virtual Compton scattering at 0.33 (GeV/c)
The cross section of the reaction has been measured at
(GeV/c). The experiment was performed using the electron beam
of the MAMI accelerator and the standard detector setup of the A1
Collaboration. The cross section is analyzed using the low-energy theorem for
virtual Compton scattering, yielding a new determination of the two structure
functions P_LL}-P_{TT}/epsilon and which are linear combinations of
the generalized polarizabilities of the proton. We find somewhat larger values
than in the previous investigation at the same . This difference, however,
is purely due to our more refined analysis of the data. The results tend to
confirm the non-trivial -evolution of the generalized polarizabilities and
call for more measurements in the low- region ( 1 (GeV/c)).Comment: 9 pages, 10 figures. EPJA version. slight revisions in the text and
figure
First measurements of the ^16O(e,e'pn)^14N reaction
This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction.
Data were measured in kinematics centred on a super-parallel geometry at energy
and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution
was sufficient to distinguish groups of states in the residual nucleus but not
good enough to separate individual states. The data show a strong dependence on
missing momentum and this dependence appears to be different for two groups of
states in the residual nucleus. Theoretical calculations of the reaction using
the Pavia code do not reproduce the shape or the magnitude of the data.Comment: 10 pages, 11 figures, 2 tables, Accepted for publication in EPJ
Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance
The recoil proton polarization has been measured in the p (\vec e,e'\vec p)
pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2
and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz
Microtron. Due to the spin precession in a magnetic spectrometer, all three
proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y =
(-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be
measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR =
(-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework
of the Mainz Unitary Isobar Model. The consistency among the reduced
polarizations and the extraction of the ratio of longitudinal to transverse
response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure
Search for narrow nucleon resonances below pion threshold in the H(e,e′π+)X and 2H(e,e′p)X reactions
In two series of high-resolution coincidence experiments at the three-spectrometer facility at MAMI, the H(e, epi+)X and 2H(e, ep)X reactions were studied to search for narrow nucleon resonances below pion threshold. The missing-mass resolution was 0.6-1.6 MeV/c2 full width at half maximum in the proton experiment and 0.9-1.3 MeV/c2 in the deuteron experiment. The experiments covered the missing-mass region from the neutron mass up to about 1050 and 1100 MeV/c2, respectively. None of our measurements showed a signal for narrow resonances to a level of down to 10-4 with respect to the neutron peak in the missing-mass spectra
- …
