14 research outputs found

    Photodynamic Therapy for Gastric Cancer

    Get PDF

    Progress of Photodynamic Therapy in Gastric Cancer

    Get PDF
    Progress of photodynamic therapy (PDT) in gastric cancer and the clinical outcome are described in this paper. (1) We included the whole lesion and a 5 mm margin in the field for irradiation. Marking by injection of India-ink showing the irradiation field was performed beforehand. (2) We established the standard light dose to be 90 J/cm2 for an argon dye laser and 60 J/cm2 for a pulse wave laser. (3) The size of cancerous lesion curable by PDT was expanded from 3 cm in diameter, i.e. 7 cm2 in area to 4 cm in diameter, i.e. 13 cm2 by employing a new excimer dye laser model, which could emit 4mJ/pulse with 80 Hz pulse frequency. (4) The depth of cancer invasion which could be treated by PDT was increased from about 4 mm, i.e. the superficial part of the submucosal layer (SM-1) to more than 10 mm in depth, i.e. the proper muscular layer. These improvements owe much to the pulse laser, the photodynamic action induced by which permits deeper penetration than that of a continuous wave laser. (5) We employed a side-viewing fiberscope for gastric PDT to irradiate the lesion from an angle of 90°. (6) We designed a simple cut quartz fiber for photoradiation with a spiral spring thickened toward the end. (7) We developed an endoscopic device for photoradiation in PDT which achieves accurate and efficient irradiation. As a result of these improvements a higher cure rate was obtained even with a lower light dose of irradiation

    A New Technique for Improving Visualization of Mucosal Lesions During Endoscopic Photodynamic Therapy

    Get PDF
    A new device consisting of a conventional fiberscope and a new TV system (model OTV-S5, Olympus Optical Co., Tokyo, Japan) has been developed to achieve accurate irradiation of laser light in photodynamic therapy for gastric cancer. This model has high resolution and sensitivity, and its signal can be transmitted by red, green and blue. In front of the CCD we inserted a special interference filter which has specific absorption of red light with 2.3% transmissivity at a 630 nm wavelength and a 50 nm absorption band of full width at half maximum. The average transmittance in the visible region, except for at 630 nm, was 90%. A neutral density filter with 16% transmittance was added to adjust to the sensitivity of the CCD. The device makes it possible to perform accurate irradiation, because we can observe both the lesion and the laser spot on a monitor in original colors during irradiation

    A Clinical Study of Photodynamic Therapy for Superficial Esophageal Carcinoma by YAG-OPO Laser

    Get PDF
    A cooperative clinical study of photodynamic therapy (PDT) for superficial esophageal carcinoma was conducted at 6 medical institution. PHE (2mg/kg) with high tumor affinity was used as the oncotropic compound. The light source was a pulse wave YAG-OPO laser with high penetration into the tissue. Irradiation was performed at an energy density of 60–180 J/cm2 48–72 h after PHE administration. Eight lesions in 6 patients were treated. All were type 0-II superficial carcinomas. The depth of invasion was EP–MM for 6 lesions and SM for 2 lesions. A complete response (CR) was achieved in all patients after one session of PDT. Five adverse events, including anemia and fever, were reported by 4 patients, but all were WHO grade 2 or lower and transient. PDT using PHE and YAG-OPO laser was therefore considered effective as a curative therapy for superficial esophageal carcinoma

    Cooperative Clinical Trial of Photodynamic Therapy for Early Gastric Cancer With Photofrin Injection® and YAG-OPO Laser

    Get PDF
    Background and Objective: Photodynamic therapy (PDT) treats malignant tumors using photosensitizers and light. We employed a new pulse laser as the excitation light source for PDT, i.e. an optical parametric oscillator (OPO) system pumped by a Q-switched Nd:YAG laser, because it provides extremely high peak power

    Effect of photodynamic therapy for early gastric cancer with submucosal invasion

    No full text

    Photodynamic Therapy for Early Gastric Cancer: its Application for Wider Lesions

    No full text

    Further investigation in photodynamic therapy

    Full text link
    corecore