48 research outputs found

    The mediator head module and regulation of RNA polymerase II transcription initiation

    Get PDF

    A Conserved GA Element in TATA-Less RNA Polymerase II Promoters

    Get PDF
    Initiation of RNA polymerase (Pol) II transcription requires assembly of the pre-initiation complex (PIC) at the promoter. In the classical view, PIC assembly starts with binding of the TATA box-binding protein (TBP) to the TATA box. However, a TATA box occurs in only 15% of promoters in the yeast Saccharomyces cerevisiae, posing the question how most yeast promoters nucleate PIC assembly. Here we show that one third of all yeast promoters contain a novel conserved DNA element, the GA element (GAE), that generally does not co-occur with the TATA box. The distance of the GAE to the transcription start site (TSS) resembles the distance of the TATA box to the TSS. The TATA-less TMT1 core promoter contains a GAE, recruits TBP, and supports formation of a TBP-TFIIB-DNA-complex. Mutation of the promoter region surrounding the GAE abolishes transcription in vivo and in vitro. A 32-nucleotide promoter region containing the GAE can functionally substitute for the TATA box in a TATA-containing promoter. This identifies the GAE as a conserved promoter element in TATA-less promoters

    Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization

    Get PDF
    Mediator is a multiprotein co-activator of RNA polymerase (Pol) II transcription. Mediator contains a conserved core that comprises the ‘head’ and ‘middle’ modules. We present here a structure–function analysis of the essential Med11/22 heterodimer, a part of the head module. Med11/22 forms a conserved four-helix bundle domain with C-terminal extensions, which bind the central head subunit Med17. A highly conserved patch on the bundle surface is required for stable transcription pre-initiation complex formation on a Pol II promoter in vitro and in vivo and may recruit the general transcription factor TFIIH. The bundle domain fold is also present in the Mediator middle module subcomplex Med7/21 and is predicted in the Mediator heterodimers Med2/3, Med4/9, Med10/14 and Med28/30. The bundle domain thus represents a common building block that has been multiplied and functionally diversified during Mediator evolution in eukaryotes

    Zum Zusammenhang von Weisheit und der Vorstellung eines "guten Lebens"

    No full text
    Christina SeizlAlpen Adria Universität Klagenfurt, Masterarbeit, 2015(VLID)240914

    Zum Zusammenhang von Weisheit und der Vorstellung eines "guten Lebens"

    No full text
    Christina SeizlMasterarbeit Alpen Adria Universität Klagenfurt 201

    The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes

    Get PDF
    Different steps in gene expression are intimately linked. In Saccharomyces cerevisiae, the conserved TREX complex couples transcription to nuclear messenger RNA (mRNA) export. However, it is unknown how TREX is recruited to actively transcribed genes. Here, we show that the Prp19 splicing complex functions in transcription elongation. The Prp19 complex is recruited to transcribed genes, interacts with RNA polymerase II (RNAPII) and TREX, and is absolutely required for TREX occupancy at transcribed genes. Importantly, the Prp19 complex is necessary for full transcriptional activity. Taken together, we identify the Prp19 splicing complex as a novel transcription elongation factor that is essential for TREX occupancy at transcribed genes and that thus provides a novel link between transcription and messenger ribonucleoprotein (mRNP) formation

    A structural perspective on Mediator function

    No full text
    Gene transcription by RNA polymerase II requires the multiprotein coactivator complex Mediator. Mediator was identified two decades ago, but its molecular mechanisms remain poorly understood, because structural studies are hampered by its large size, modularity, and flexibility. Here we collect all available structural data on Mediator and discuss their functional implications. Progress was made in understanding the interactions of Mediator with gene-specific transcriptional regulators and the general transcription machinery. However, around 80% of the Mediator structure remains unknown and details on the Mediator–Pol II interface are lacking. In the future, an integrated structural biology approach may unravel the functional architecture of Mediatorregulated promoter assemblies and holds the promise of understanding a key mechanism of gene regulation

    Structure of the Mediator head subcomplex Med11/22

    No full text

    Iwr1 directs RNA polymerase II nuclear import

    Get PDF
    RNA polymerase (Pol) II transcribes protein-coding genes in the nucleus of eukaryotic cells and consists of 12 polypeptide subunits. It is unknown how Pol II is imported into the nucleus. Here we show that Pol II nuclear import requires the protein Iwr1 and provide evidence for cyclic Iwr1 function. Iwr1 binds Pol II in the active center cleft between the two largest subunits, maybe facilitating or sensing complete Pol II assembly in the cytoplasm. Iwr1 then uses an N-terminal bipartite nuclear localization signal that is recognized by karyopherin alpha to direct Pol II nuclear import. In the nucleus, Iwr1 is displaced from Pol II by transcription initiation factors and nucleic acids, enabling its export and recycling. Iwr1 function is Pol II specific, transcription independent, and apparently conserved from yeast to human

    Iwr1 directs RNA polymerase II nuclear import

    No full text
    RNA polymerase (Pol) II transcribes protein-coding genes in the nucleus of eukaryotic cells and consists of 12 polypeptide subunits. It is unknown how Pol II is imported into the nucleus. Here we show that Pol II nuclear import requires the protein Iwr1 and provide evidence for cyclic Iwr1 function. Iwr1 binds Pol II in the active center cleft between the two largest subunits, maybe facilitating or sensing complete Pol II assembly in the cytoplasm. Iwr1 then uses an N-terminal bipartite nuclear localization signal that is recognized by karyopherin alpha to direct Pol II nuclear import. In the nucleus, Iwr1 is displaced from Pol II by transcription initiation factors and nucleic acids, enabling its export and recycling. Iwr1 function is Pol II specific, transcription independent, and apparently conserved from yeast to human
    corecore