548 research outputs found
DNA Repair in Drosophila : Mutagens, Models, and Missing Genes
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster. Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations
Crafting Community Solar Programs to Alleviate Energy Burdens and Empower Communities in Virginia
Low to moderate-income (LMI) groups usually suffer from high energy burdens and community solar is a renewable energy strategy that can save LMI groups on their monthly electricity bills. This research explores the intersection of renewable energy and energy justice, specifically the potential for community solar, energy efficiency, and home weatherization to alleviate Virginia\u27s energy burdens. Included is an analysis of incentives, programs, and Greenhouse gas emission goals for the state, investigations on how low-income groups are receiving aid and what is available to them from programs and utilities, suitable sites for solar based on groups in need, and comparisons are made between active community solar programs in other states to what Virginia offers. These analyses reveal that Virginia has solar incentives and programs however not enough for LMI groups to benefit. This confirms that there is not enough funding to tackle the everyday needs of all burdened people to benefit from renewably sourced electricity. Recommendations for the state to improve Community Solar for disadvantaged groups include 1) empowering and providing funding for smaller communities to facilitate community solar, electric bill assistance, and weatherization relief, 2) Optimizing the location of community solar and new infrastructure with low-income communities in mind, 3) improving education towards the availability of energy assistance and the benefits renewable energy provides for smaller communities, 4) emphasize the importance of collaboration between utilities, governments, non-profits, and communities to create a cohesive and well run community solar program. These recommendations stress that small LMI communities need to gain more support and financial benefits to be included in the renewable energy revolution
Microwave Remote Sensing of Falling Snow
This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements
Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair
DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells
The dynamic roles of TGF-β signalling in EBV-associated cancers
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed
The absence of crossovers on chromosome 4 in Drosophila melanogaster : Imperfection or interesting exception?
Drosophila melanogaster chromosome 4 is an anomaly because of its small size, chromatin structure, and most notably its lack of crossing over during meiosis. Earlier ideas about the absence of crossovers on 4 hypothesize that these unique characteristics function to prevent crossovers. Here, we explore hypotheses about the absence of crossovers on 4, how these have been addressed, and new insights into the mechanism behind this suppression. We review recently published results that indicate that global crossover patterning, in particular the centromere effect, make a major contribution to the prevention of crossovers on 4
Annealing of Complementary DNA Sequences During Double-Strand Break Repair in Drosophila Is Mediated by the Ortholog of SMARCAL1
DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. We hypothesized that annealing during SDSA is performed by the annealing helicase SMARCAL1, which can anneal RPA-coated single DNA strands during replication-associated DNA damage repair. We used unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP-binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP-binding defect mutant showed reduced end joining, shedding light on the interaction between SDSA and end-joining pathways
DNA damage responses in Drosophila nbs mutants with reduced or altered NBS function
The MRN complex, composed of MRE11, RAD50 and NBS, plays important roles in responding to DNA double-strand breaks (DSBs). In metazoans, functional studies of genes encoding these proteins have been challenging because complete loss-of-function mutations are lethal at the organismal level and because NBS has multiple functions in DNA damage responses. To study functions of Drosophila NBS in DNA damage responses, we used a separation-of-function mutation that causes loss of the forkhead-associated (FHA) domain. Loss of the FHA domain resulted in hypersensitivity to ionizing radiation and defects in gap repair by homologous recombination, but had only a small effect on the DNA damage checkpoint response and did not impair DSB repair by end joining. We also found that heterozygosity for an nbs null mutation caused reduced gap repair and loss of the checkpoint response to low-dose irradiation. These findings shed light on possible sources of the cancer predisposition found in human carriers of NBN mutations
- …
