644 research outputs found
A central limit theorem for the zeroes of the zeta function
On the assumption of the Riemann hypothesis, we generalize a central limit
theorem of Fujii regarding the number of zeroes of Riemann's zeta function that
lie in a mesoscopic interval. The result mirrors results of Soshnikov and
others in random matrix theory. In an appendix we put forward some general
theorems regarding our knowledge of the zeta zeroes in the mesoscopic regime.Comment: 22 pages. Incorporates referees suggestions. Contains minor
corrections to published versio
Coulomb integrals for the SL(2,R) WZNW model
We review the Coulomb gas computation of three-point functions in the SL(2,R)
WZNW model and obtain explicit expressions for generic states. These amplitudes
have been computed in the past by this and other methods but the analytic
continuation in the number of screening charges required by the Coulomb gas
formalism had only been performed in particular cases. After showing that ghost
contributions to the correlators can be generally expressed in terms of Schur
polynomials we solve Aomoto integrals in the complex plane, a new set of
multiple integrals of Dotsenko-Fateev type. We then make use of monodromy
invariance to analytically continue the number of screening operators and prove
that this procedure gives results in complete agreement with the amplitudes
obtained from the bootstrap approach. We also compute a four-point function
involving a spectral flow operator and we verify that it leads to the one unit
spectral flow three-point function according to a prescription previously
proposed in the literature. In addition, we present an alternative method to
obtain spectral flow non-conserving n-point functions through well defined
operators and we prove that it reproduces the exact correlators for n=3.
Independence of the result on the insertion points of these operators suggests
that it is possible to violate winding number conservation modifying the
background charge.Comment: Improved presentation. New section on spectral flow violating
correlators and computation of a four-point functio
Massive Scaling Limit of beta-Deformed Matrix Model of Selberg Type
We consider a series of massive scaling limits m_1 -> infty, q -> 0, lim m_1
q = Lambda_{3} followed by m_4 -> infty, Lambda_{3} -> 0, lim m_4 Lambda_{3} =
(Lambda_2)^2 of the beta-deformed matrix model of Selberg type (N_c=2, N_f=4)
which reduce the number of flavours to N_f=3 and subsequently to N_f=2. This
keeps the other parameters of the model finite, which include n=N_L and
N=n+N_R, namely, the size of the matrix and the "filling fraction". Exploiting
the method developed before, we generate instanton expansion with finite g_s,
epsilon_{1,2} to check the Nekrasov coefficients (N_f =3,2 cases) to the lowest
order. The limiting expressions provide integral representation of irregular
conformal blocks which contains a 2d operator lim frac{1}{C(q)} : e^{(1/2)
\alpha_1 \phi(0)}: (int_0^q dz : e^{b_E phi(z)}:)^n : e^{(1/2) alpha_2 phi(q)}:
and is subsequently analytically continued.Comment: LaTeX, 21 pages; v2: a reference adde
Representations of integers by certain positive definite binary quadratic forms
We prove part of a conjecture of Borwein and Choi concerning an estimate on
the square of the number of solutions to n=x^2+Ny^2 for a squarefree integer N.Comment: 8 pages, submitte
Wigner quantization of some one-dimensional Hamiltonians
Recently, several papers have been dedicated to the Wigner quantization of
different Hamiltonians. In these examples, many interesting mathematical and
physical properties have been shown. Among those we have the ubiquitous
relation with Lie superalgebras and their representations. In this paper, we
study two one-dimensional Hamiltonians for which the Wigner quantization is
related with the orthosymplectic Lie superalgebra osp(1|2). One of them, the
Hamiltonian H = xp, is popular due to its connection with the Riemann zeros,
discovered by Berry and Keating on the one hand and Connes on the other. The
Hamiltonian of the free particle, H_f = p^2/2, is the second Hamiltonian we
will examine. Wigner quantization introduces an extra representation parameter
for both of these Hamiltonians. Canonical quantization is recovered by
restricting to a specific representation of the Lie superalgebra osp(1|2)
Patterns of primes in arithmetic progressions
After the proof of Zhang about the existence of infinitely many bounded gaps between consecutive primes the author showed the existence of a bounded d such that there are arbitrarily long arithmetic progressions of primes with the property that p′ = p + d is the prime following p for each element of the progression. This was a common generalization of the results of Zhang and Green-Tao. In the present work it is shown that for every m we have a bounded m-tuple of primes such that this configuration (i.e. the integer translates of this m-tuple) appear as arbitrarily long arithmetic progressions in the sequence of all primes. In fact we show that this is true for a positive proportion of all m-tuples. This is a common generalization of the celebrated works of Green-Tao and Maynard/Tao.
Dedicated to the 60th birthday of Robert F. Tich
The Selberg trace formula for Dirac operators
We examine spectra of Dirac operators on compact hyperbolic surfaces.
Particular attention is devoted to symmetry considerations, leading to
non-trivial multiplicities of eigenvalues. The relation to spectra of
Maass-Laplace operators is also exploited. Our main result is a Selberg trace
formula for Dirac operators on hyperbolic surfaces
Casimir Effect in Hyperbolic Polygons
We derive a trace formula for the spectra of quantum mechanical systems in
hyperbolic polygons which are the fundamental domains of discrete isometry
groups acting in the two dimensional hyperboloid. Using this trace formula and
the point splitting regularization method we calculate the Casimir energy for a
scalar fields in such domains. The dependence of the vacuum energy on the
number of vertexes is established.Comment: Latex, 1
The least common multiple of a sequence of products of linear polynomials
Let be the product of several linear polynomials with integer
coefficients. In this paper, we obtain the estimate: as , where is a constant depending on
.Comment: To appear in Acta Mathematica Hungaric
Eigenvalues of Laplacian with constant magnetic field on non-compact hyperbolic surfaces with finite area
We consider a magnetic Laplacian on a
noncompact hyperbolic surface \mM with finite area. is a real one-form
and the magnetic field is constant in each cusp. When the harmonic
component of satifies some quantified condition, the spectrum of
is discrete. In this case we prove that the counting function of
the eigenvalues of satisfies the classical Weyl formula, even
when $dA=0.
- …
