168 research outputs found

    A longitudinal survey of African animal trypanosomiasis in domestic cattle on the Jos Plateau, Nigeria:prevalence, distribution and risk factors

    Get PDF
    BACKGROUND: Trypanosomiasis is a widespread disease of livestock in Nigeria and a major constraint to the rural economy. The Jos Plateau, Nigeria was free from tsetse flies and the trypanosomes they transmit due to its high altitude and the absence of animal trypanosomiasis attracted large numbers of cattle-keeping pastoralists to inhabit the plateau. The Jos Plateau now plays a significant role in the national cattle industry, accommodating approximately 7% of the national herd and supporting 300,000 pastoralists and over one million cattle. However, during the past two decades tsetse flies have invaded the Jos Plateau and animal trypanosomiasis has become a significant problem for livestock keepers. METHODS: In 2008 a longitudinal two-stage cluster survey on the Jos Plateau. Cattle were sampled in the dry, early wet and late wet seasons. Parasite identification was undertaken using species-specific polymerase chain reactions to determine the prevalence and distribution bovine trypanosomiasis. Logistic regression was performed to determine risk factors for disease. RESULTS: The prevalence of bovine trypanosomiasis (Trypanosoma brucei brucei, Trypanosoma congolense savannah, Trypanosoma vivax) across the Jos Plateau was found to be high at 46.8% (39.0 – 54.5%) and significant, seasonal variation was observed between the dry season and the end of the wet season. T. b. brucei was observed at a prevalence of 3.2% (1% – 5.5%); T. congolense at 27.7% (21.8% - 33.6%) and T. vivax at 26.7% (18.2% - 35.3%). High individual variation was observed in trypanosomiasis prevalence between individual villages on the Plateau, ranging from 8.8% to 95.6%. Altitude was found to be a significant risk factor for trypanosomiasis whilst migration also influenced risk for animal trypanosomiasis. CONCLUSIONS: Trypanosomiasis is now endemic on the Jos Plateau showing high prevalence in cattle and is influenced by seasonality, altitude and migration practices. Attempts to successfully control animal trypanosomiasis on the Plateau will need to take into account the large variability in trypanosomiasis infection rates between villages, the influence of land use, and husbandry and management practices of the pastoralists, all of which affect the epidemiology of the disease

    Ovarian cancer risk and common variation in the sex hormone-binding globulin gene: a population-based case-control study

    Get PDF
    BACKGROUND: The sex hormone-binding globulin (SHBG) is a carrier protein that modulates the bio-availability of serum sex steroid hormones, which may be involved in ovarian cancer. We evaluated whether common genetic variation in SHBG and its 3' neighbor ATP1B2, in linkage disequilibrium, is associated with the risk of epithelial ovarian cancer. METHODS: The study population included 264 women with ovarian carcinoma and 625 controls participating in a population-based case-control study in Poland. Five common single nucleotide polymorphisms (SNPs) in SHGB and five in ATP1B2 were selected to capture most common variation in this region. RESULTS: None of the SNPs evaluated was significantly associated with ovarian cancer risk, including the putative functional SNPs SHBG D356N (rs6259) and -67G>A 5'UTR (rs1799941). However, our data were consistent with a decreased ovarian cancer risk associated with the variant alleles for these two SNPs, which have been previously associated with increased circulating levels of SHBG. CONCLUSION: These data do not support a substantial association between common genetic variation in SHBG and ovarian cancer risk

    Inactivation of the dnaK gene in Clostridium difficile 630 Δerm yields a temperature-sensitive phenotype and increases biofilm-forming ability

    Get PDF
    Abstract Clostridium difficile infection is a growing problem in healthcare settings worldwide and results in a considerable socioeconomic impact. New hypervirulent strains and acquisition of antibiotic resistance exacerbates pathogenesis; however, the survival strategy of C. difficile in the challenging gut environment still remains incompletely understood. We previously reported that clinically relevant heat-stress (37–41 °C) resulted in a classical heat-stress response with up-regulation of cellular chaperones. We used ClosTron to construct an insertional mutation in the dnaK gene of C. difficile 630 Δerm. The dnaK mutant exhibited temperature sensitivity, grew more slowly than C. difficile 630 Δerm and was less thermotolerant. Furthermore, the mutant was non-motile, had 4-fold lower expression of the fliC gene and lacked flagella on the cell surface. Mutant cells were some 50% longer than parental strain cells, and at optimal growth temperatures, they exhibited a 4-fold increase in the expression of class I chaperone genes including GroEL and GroES. Increased chaperone expression, in addition to the non-flagellated phenotype of the mutant, may account for the increased biofilm formation observed. Overall, the phenotype resulting from dnaK disruption is more akin to that observed in Escherichia coli dnaK mutants, rather than those in the Gram-positive model organism Bacillus subtilis

    On the Action of Cyclosporine A, Rapamycin and Tacrolimus on M. avium Including Subspecies paratuberculosis

    Get PDF
    BACKGROUND: Mycobacterium avium subspecies paratuberculosis (MAP) may be zoonotic. Recently the "immuno-modulators" methotrexate, azathioprine and 6-MP and the "anti-inflammatory" 5-ASA have been shown to inhibit MAP growth in vitro. We concluded that their most plausible mechanism of action is as antiMAP antibiotics. The "immunosuppressants" Cyclosporine A, Rapamycin and Tacrolimus (FK 506) treat a variety of "autoimmune" and "inflammatory" diseases. Rapamycin and Tacrolimus are macrolides. We hypothesized that their mode of action may simply be to inhibit MAP growth. METHODOLOGY: The effect on radiometric MAP (14)CO(2) growth kinetics of Cyclosporine A, Rapamycin and Tacrolimus on MAP cultured from humans (Dominic & UCF 4) or ruminants (ATCC 19698 & 303) and M. avium subspecies avium (ATCC 25291 & 101) are presented as "percent decrease in cumulative GI" (%-DeltacGI.) PRINCIPAL FINDINGS: The positive control clofazimine has 99%-DeltacGI at 0.5 microg/ml (Dominic). Phthalimide, a negative control has no dose dependent inhibition on any strain. Against MAP there is dose dependent inhibition by the immunosuppressants. Cyclosporine has 97%-DeltacGI by 32 microg/ml (Dominic), Rapamycin has 74%-DeltacGI by 64 microg/ml (UCF 4) and Tacrolimus 43%-DeltacGI by 64 microg/ml (UCF 4) CONCLUSIONS: We show heretofore-undescribed inhibition of MAP growth in vitro by "immunosuppressants;" the cyclic undecapeptide Cyclosporine A, and the macrolides Rapamycin and Tacrolimus. These data are compatible with our thesis that, unknowingly, the medical profession has been treating MAP infections since 1942 when 5-ASA and subsequently azathioprine, 6-MP and methotrexate were introduced in the therapy of some "autoimmune" and "inflammatory" diseases

    Addressing vulnerability, building resilience:community-based adaptation to vector-borne diseases in the context of global change

    Get PDF
    Abstract Background The threat of a rapidly changing planet – of coupled social, environmental and climatic change – pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. Main body In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. Conclusion In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present

    The burden and spatial distribution of bovine African trypanosomes in small holder crop-livestock production systems in Tororo District, south-eastern Uganda

    Get PDF
    African animal trypanosomiasis (AAT) is considered to be one of the greatest constraints to livestock production and livestock-crop integration in most African countries. South-eastern Uganda has suffered for more than two decades from outbreaks of zoonotic Human African Trypanosomiasis (HAT), adding to the burden faced by communities from AAT. There is insufficient AAT and HAT data available (in the animal reservoir) to guide and prioritize AAT control programs that has been generated using contemporary, sensitive and specific molecular techniques. This study was undertaken to evaluate the burden that AAT presents to the small-scale cattle production systems in south-eastern Uganda. Randomised cluster sampling was used to select 14% (57/401) of all cattle containing villages across Tororo District. Blood samples were taken from all cattle in the selected villages between September-December 2011; preserved on FTA cards and analysed for different trypanosomes using a suite of molecular techniques. Generalized estimating equation and Rogen-Gladen estimator models were used to calculate apparent and true prevalences of different trypanosomes while intra cluster correlations were estimated using a 1-way mixed effect analysis of variance (ANOVA) in R statistical software version 3.0.2.ResultsThe prevalence of all trypanosome species in cattle was 15.3% (95% CI; 12.2-19.1) while herd level trypanosome species prevalence varied greatly between 0-43%. Trypanosoma vivax (17.4%, 95% CI; 10.6-16.8) and Trypanosoma brucei rhodesiense (0.03%) were respectively, the most, and least prevalent trypanosome species identified. The prevalence of bovine trypanosomes in this study indicates that AAT remains a significant constraint to livestock health and livestock production. There is need to implement tsetse and trypanosomiasis control efforts across Tororo District by employing effective, cheap and sustainable tsetse and trypanosomiasis control method that could be integrated in the control of other endemic vector borne diseases like tick-borne diseases

    Improvements on Restricted Insecticide Application Protocol for Control of Human and Animal African Trypanosomiasis in Eastern Uganda

    Get PDF
    African trypanosomes constrain livestock and human health in Sub-Saharan Africa, and aggravate poverty and hunger of these otherwise largely livestock-keeping communities. To solve this, there is need to develop and use effective and cheap tsetse control methods. To this end, we aimed at determining the smallest proportion of a cattle herd that needs to be sprayed on the legs, bellies and ears (RAP) for effective Human and Animal African Trypanosomiasis (HAT/AAT) control.; Cattle in 20 villages were ear-tagged and injected with two doses of diminazene diaceturate (DA) forty days apart, and randomly allocated to one of five treatment regimens namely; no treatment, 25%, 50%, 75% monthly RAP and every 3 month Albendazole drench. Cattle trypanosome re-infection rate was determined by molecular techniques. ArcMap V10.3 was used to map apparent tsetse density (FTD) from trap catches. The effect of graded RAP on incidence risk ratios and trypanosome prevalence was determined using Poisson and logistic random effect models in R and STATA V12.1 respectively. Incidence was estimated at 9.8/100 years in RAP regimens, significantly lower compared to 25.7/100 years in the non-RAP regimens (incidence rate ratio: 0.37; 95% CI: 0.22-0.65; P>0.001). Likewise, trypanosome prevalence after one year of follow up was significantly lower in RAP animals than in non-RAP animals (4% vs 15%, OR: 0.20, 95% CI: 0.08-0.44; P>0.001). Contrary to our expectation, level of protection did not increase with increasing proportion of animals treated.; Reduction in RAP coverage did not significantly affect efficacy of treatment. This is envisaged to improve RAP adaptability to low income livestock keepers but needs further evaluation in different tsetse challenge, HAT/AAT transmission rates and management systems before adopting it for routine tsetse control programs
    corecore