1,881 research outputs found

    Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry

    Get PDF
    The purposeful application of fermentation in food and beverage preparation, as a means to provide palatability, nutritional value, preservative, and medicinal properties, is an ancient practice. Fermented foods and beverages continue to make a significant contribution to the overall patterns of traditional dietary practices. As our knowledge of the human microbiome increases, including its connection to mental health (for example, anxiety and depression), it is becoming increasingly clear that there are untold connections between our resident microbes and many aspects of physiology. Of relevance to this research are new findings concerning the ways in which fermentation alters dietary items pre-consumption, and in turn, the ways in which fermentation-enriched chemicals (for example, lactoferrin, bioactive peptides) and newly formed phytochemicals (for example, unique flavonoids) may act upon our own intestinal microbiota profile. Here, we argue that the consumption of fermented foods may be particularly relevant to the emerging research linking traditional dietary practices and positive mental health. The extent to which traditional dietary items may mitigate inflammation and oxidative stress may be controlled, at least to some degree, by microbiota. It is our contention that properly controlled fermentation may often amplify the specific nutrient and phytochemical content of foods, the ultimate value of which may associated with mental health; furthermore, we also argue that the microbes (for example, Lactobacillus and Bifidobacteria species) associated with fermented foods may also influence brain health via direct and indirect pathways

    Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research

    Get PDF
    In recent years there has been a renewed interest concerning the ways in which the gastrointestinal tract – its functional integrity and microbial residents – might influence human mood (e.g. depression) and behavioral disorders. Once a hotbed of scientific interest in the early 20th century, this area lay dormant for decades, in part due to its association with the controversial term ‘autointoxication’. Here we review contemporary findings related to intestinal permeability, small intestinal bacterial overgrowth, lipopolysaccharide endotoxin (LPS) exposure, D-lactic acid, propionic acid, and discuss their relevance to microbiota and mental health. In addition, we include the context of modern dietary habits as they relate to depression, anxiety and their potential interaction with intestinal microbiota

    Intestinal Microbiota, Probiotics and Mental Health: From Metchnikoff to Modern Advances: Part I – Autointoxication Revisited

    Get PDF
    Mental health disorders, depression in particular, have been described as a global epidemic. Research suggests that a variety of lifestyle and environmental changes may be driving at least some portion of the increased prevalence. One area of flourishing research involves the relationship between the intestinal microbiota (as well as the related functional integrity of the gastrointestinal tract) and mental health. In order to appreciate the recent scientific gains in this area, and its potential future directions, it is critical to review the history of the topic. Probiotic administration (e.g. Lactobacillus) and fecal microbiota transfer for conditions associated with depression and anxiety is not a new concept. Here, in the first of a 3-part series, we begin by reviewing the origins of the contemporary research, providing a critical appraisal of what has become a revisionist history of the controversial term ‘autointoxication’. We argue that legitimate interests in the gut-brain-microbiota connection were obscured for decades by its association with a narrow historical legacy. Historical perspectives provide a very meaningful context to the current state of the contemporary research as outlined in parts II and III

    Intestinal Microbiota, Probiotics and Mental Health: From Metchnikoff to Modern Advances: Part III – Convergence toward Clinical Trials

    Get PDF
    Rapid scientific and technological advances have allowed for a more detailed understanding of the relevance of intestinal microbiota, and the entire body-wide microbiome, to human health and well-being. Rodent studies have provided suggestive evidence that probiotics (e.g. lactobacillus and bifidobacteria) can influence behavior. More importantly, emerging clinical studies indicate that the administration of beneficial microbes, via supplementation and/or fecal microbial transplant (FMT), can influence end-points related to mood state (glycemic control, oxidative status, uremic toxins), brain function (functional magnetic resonance imaging fMRI), and mental outlook (depression, anxiety). However, despite the advances in the area of gastro-biological psychiatry, it becomes clear that there remains an urgent need to explore the value of beneficial microbes in controlled clinical investigations. With the history explored in this series, it is fair to ask if we are now on the cusp of major clinical breakthroughs, or are we merely in the quicksand of Autointoxication II

    Pre-Diagnostic Leukocyte Genomic DNA Methylation and the Risk of Colorectal Cancer in Women

    Get PDF
    Background: Abnormal one-carbon metabolism may lead to general genomic (global) hypomethylation, which may predispose an individual to the development of colorectal neoplasia. Methods: We evaluated the association between pre-diagnostic leukocyte genomic DNA methylation level and the risk of colorectal cancer in a nested case-control study of 358 colorectal cancer cases and 661 matched controls within the all-female cohort of the Nurses’ Health Study (NHS). Among control subjects, we further examined major plasma components in the one-carbon metabolism pathway in relation to genomic DNA methylation level. Liquid chromatography/tandem mass spectrometry was used to examine leukocyte genomic DNA methylation level. We calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) using logistic regression. Results: Overall genomic DNA methylation level was not associated with the risk of colorectal cancer (p for trend, 0.45). Compared with women in the lowest quintile of methylation, the multivariate OR of colorectal cancer risk was 1.32 (95% CI, 0.82–2.13) for those in the highest quintile. We did not find significant associations between major plasma components of one-carbon metabolism or risk factors for colorectal cancer and genomic DNA methylation level (all p for trend >0.05). Also, neither one-carbon metabolism-related plasma components nor well-known risk factors for colorectal cancer modified the association between genomic DNA methylation level and the risk of colorectal cancer (all p for interaction >0.05). Conclusions: We found no evidence that hypomethylation of leukocyte genomic DNA increases risk of colorectal cancer among women. Additional studies are needed to investigate the association between pre-diagnostic genomic DNA methylation level and colorectal cancer risk among diverse populations

    Promotion of innovative products in Siberia through information technologies

    Get PDF
    The article raised the question of the promotion of innovative products and services on the territory of Siberia. The topic today is very urgent, because most of these products come to Russia with the Western countries. In view of the prevailing negative trends, it becomes a matter of efficient import substitution, production of which can not be built without a market analysis, creating and promoting innovation in the aftermath of the goods on the market

    1,25‐dihydroxyvitamin D 3 influences cellular homocysteine levels in murine preosteoblastic MC3T3‐E1 cells by direct regulation of cystathionine β‐synthase

    Full text link
    High homocysteine (HCY) levels are a risk factor for osteoporotic fracture. Furthermore, bone quality and strength are compromised by elevated HCY owing to its negative impact on collagen maturation. HCY is cleared by cystathionine β‐synthase (CBS), the first enzyme in the transsulfuration pathway. CBS converts HCY to cystathionine, thereby committing it to cysteine synthesis. A microarray experiment on MC3T3‐E1 murine preosteoblasts treated with 1,25‐dihydroxyvitamin D 3 [1,25(OH) 2 D 3 ] revealed a cluster of genes including the cbs gene, of which the transcription was rapidly and strongly induced by 1,25(OH) 2 D 3 . Quantitative real‐time PCR and Western blot analysis confirmed higher levels of cbs mRNA and protein after 1,25(OH) 2 D 3 treatment in murine and human cells. Moreover, measurement of CBS enzyme activity and quantitative measurements of HCY, cystathionine, and cysteine concentrations were consistent with elevated transsulfuration activity in 1,25(OH) 2 D 3 ‐treated cells. The importance of a functional vitamin D receptor (VDR) for transcriptional regulation of cbs was shown in primary murine VDR knockout osteoblasts, in which upregulation of cbs in response to 1,25(OH) 2 D 3 was abolished. Chromatin immunoprecipitation on chip and transfection studies revealed a functional vitamin D response element in the second intron of cbs . To further explore the potential clinical relevance of our ex vivo findings, human data from the Longitudinal Aging Study Amsterdam suggested a correlation between vitamin D status [25(OH)D 3 levels] and HCY levels. In conclusion, this study showed that cbs is a primary 1,25(OH) 2 D 3 target gene which renders HCY metabolism responsive to 1,25(OH) 2 D 3 . © 2011 American Society for Bone and Mineral ResearchPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88106/1/493_ftp.pd

    Genetic Associations with Plasma B12, B6, and Folate Levels in an Ischemic Stroke Population from the Vitamin Intervention for Stroke Prevention (VISP) Trial

    Get PDF
    Background: B vitamins play an important role in homocysteine metabolism, with vitamin deficiencies resulting in increased levels of homocysteine and increased risk for stroke. We performed a genome-wide association study (GWAS) in 2,100 stroke patients from the Vitamin Intervention for Stroke Prevention (VISP) trial, a clinical trial designed to determine whether the daily intake of high-dose folic acid, vitamins B6, and B12 reduce recurrent cerebral infarction. Methods: Extensive quality control (QC) measures resulted in a total of 737,081 SNPs for analysis. Genome-wide association analyses for baseline quantitative measures of folate, Vitamins B12, and B6 were completed using linear regression approaches, implemented in PLINK. Results: Six associations met or exceeded genome-wide significance (P ≤ 5 × 10−08). For baseline Vitamin B12, the strongest association was observed with a non-synonymous SNP (nsSNP) located in the CUBN gene (P = 1.76 × 10−13). Two additional CUBN intronic SNPs demonstrated strong associations with B12 (P = 2.92 × 10−10 and 4.11 × 10−10), while a second nsSNP, located in the TCN1 gene, also reached genome-wide significance (P = 5.14 × 10−11). For baseline measures of Vitamin B6, we identified genome-wide significant associations for SNPs at the ALPL locus (rs1697421; P = 7.06 × 10−10 and rs1780316; P = 2.25 × 10−08). In addition to the six genome-wide significant associations, nine SNPs (two for Vitamin B6, six for Vitamin B12, and one for folate measures) provided suggestive evidence for association (P ≤ 10−07). Conclusion: Our GWAS study has identified six genome-wide significant associations, nine suggestive associations, and successfully replicated 5 of 16 SNPs previously reported to be associated with measures of B vitamins. The six genome-wide significant associations are located in gene regions that have shown previous associations with measures of B vitamins; however, four of the nine suggestive associations represent novel finding and warrant further investigation in additional populations

    The role and importance of gene polymorphisms in the development of atherosclerosis

    Get PDF
    The development of atherosclerosis is a multifactorial process. The purpose of the study was to examine three genetic polymorphisms playing a role in the metabolic processes underlying the disease. We compared the data of 348 atherosclerotic non-diabetic patients with 260 atherosclerotic diabetic patients and 384 healthy controls. We analyzed the prevalence of myocardial infarction and stroke in three different groups of patients carrying different polymorphisms. It was proved that if the mutant TT eNOS Glu298ASP variant is present, a significantly higher number of myocardial infarctions can be observed than in patients carrying heterozygote GT or normal GG genotype. We proved that in the case of MTHFR 677CT heterozygote variants, the occurrence of myocardial infarction is significantly higher and the difference is also significant in case of the 677TT homozygote variant. It was verified that among patients with the mutant TNF-α AA genotype the occurrence of cardiovascular events was significantly higher. Screening the genetically high risk groups on the long run should be considered as an early detection opportunity that may give better chances for prevention and treatment. Understanding the inflammatory mechanisms of the atherosclerosis may give new therapeutical targets to pharmacologists

    Exploring the association between Alzheimer’s disease, oral health, microbial endocrinology and nutrition

    Get PDF
    Longitudinal monitoring of patients suggests a causal link between chronic periodontitis and the development of Alzheimer’s disease (AD). However, the explanation of how periodontitis can lead to dementia remains unclear. A working hypothesis links extrinsic inflammation as a secondary cause of AD. This hypothesis suggests a compromised oral hygiene leads to a dysbiotic oral microbiome whereby Porphyromonas gingivalis, a keystone periodontal pathogen, with its companion species, orchestrates immune subversion in the host. Brushing and chewing on teeth supported by already injured soft tissues leads to bacteraemias. As a result, a persistent systemic inflammatory response develops to periodontal pathogens. The pathogens, and the host’s inflammatory response, subsequently lead to the initiation and progression of multiple metabolic and inflammatory co-morbidities, including AD. Insufficient levels of essential micronutrients can lead to microbial dysbiosis through the growth of periodontal pathogens such as demonstrated for P. gingivalis under low hemin bioavailability. An individual’s diet also defines the consortium of microbial communities that take up residency in the oral and gastrointestinal (GI) tract microbiomes. Their imbalance can lead to behavioural changes. For example, probiotics enriched in Lactobacillus genus of bacteria, when ingested, exert some anti-inflammatory influence through common host/bacterial neurochemicals, both locally, and through sensory signalling back to the brain. Early life dietary behaviours may cause an imbalance in the host/microbial endocrinology through a dietary intake incompatible with a healthy GI tract microbiome later in life. This imbalance in host/microbial endocrinology may have a lasting impact on mental health. This observation opens up an opportunity to explore the mechanisms, which may underlie the previously detected relationship between diet, oral/GI microbial communities, to anxiety, cognition and sleep patterns. This review suggests healthy diet based interventions that together with improved life style/behavioural changes may reduce and/or delay the incidence of AD
    corecore