851 research outputs found
Investigation of the optimal load-bearing characteristics of patellar tendon bearing (PTB) prostheses
The long term goal of the research team is to automate the construction of the lower limb prostheses using Computer Integrated Manufacturing (CIM) techniques
PlGFMMP9-engineered iPS cells supported on a PEGfibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium
Cell-based regenerative therapies are significantly improved by engineering allografts to express factors that increase vascularization and engraftment, such as placental growth factor (PlGF) and matrix metalloproteinase 9 (MMP9). Moreover, the seeding of therapeutic cells onto a suitable scaffold is of utmost importance for tissue regeneration. On these premises, we sought to assess the reparative potential of induced pluripotent stem (iPS) cells bioengineered to secrete PlGF or MMP9 and delivered to infarcted myocardium upon a poly(ethylene glycol)-fibrinogen scaffold. When assessing optimal stiffness of the PEG-fibrinogen (PF) scaffold, we found that the appearance of contracting cells after cardiogenic induction was accelerated on the support designed with an intermediate stiffness. Revascularization and hemodynamic parameters of infarcted mouse heart were significantly improved by injection into the infarct of this optimized PF scaffold seeded with both MiPS (iPS cells engineered to secrete MMP9) and PiPS (iPS cells engineered to secrete PlGF) cells as compared with nonengineered cells or PF alone. Importantly, allograft-derived cells and host myocardium were functionally integrated. Therefore, survival and integration of allografts in the ischemic heart can be significantly improved with the use of therapeutic cells bioengineered to secrete MMP9 and PlGF and encapsulated within an injectable PF hydrogel having an optimized stiffness
Regulation of dendrimer/dextran material performance by altered tissue microenvironment in inflammation and neoplasia
available in PMC 2015 October 30A “one material fits all” mindset ignores profound differences in target tissues that affect their responses and reactivity. Yet little attention has been paid to the role of diseased tissue on material performance, biocompatibility, and healing capacity. We assessed material-tissue interactions with a prototypical adhesive material based on dendrimer/dextran and colon as a model tissue platform. Adhesive materials have high sensitivity to changes in their environment and can be exploited to probe and quantify the influence of even subtle modifications in tissue architecture and biology. We studied inflammatory colitis and colon cancer and found not only a difference in adhesion related to surface chemical interactions but also the existence of a complex interplay that determined the overall dendrimer/dextran biomaterial compatibility. Compatibility was contextual, not simply a constitutive property of the material, and was related to the extent and nature of immune cells in the diseased environment present before material implantation. We then showed how to use information about local alterations of the tissue microenvironment to assess disease severity. This in turn guided us to an optimal dendrimer/dextran formulation choice using a predictive model based on clinically relevant conditions.National Institutes of Health (U.S.) (NIH grant R01 GM-49039)Deshpande Center for Technological Innovatio
Peptide-based microcapsules obtained by self-assembly and microfluidics as controlled environments for cell culture
Funding for this study was provided by the Portuguese Foundation for Science and Technology (FCT, grant PTDC/EBB-BIO/ 114523/2009). D. S. Ferreira gratefully acknowledges FCT for the PhD scholarship (SFRH/BD/44977/2008)
Biomimetic miniaturized platform able to sustain arrays of liquid droplets for high-throughput combinatorial tests
The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable in many areas of chemistry, engineering, and biology. A new model is proposed for flat devices for the high-throughput screening of accelerated evaluations of multiplexed processes and reactions taking place in aqueous-based environments. Superhydrophobic (SH) biomimetic surfaces based on the so-called lotus effect are produced, onto which arrays of micro-indentations allow the fixing of liquid droplets, based on the rose-petal effect. The developed platforms are able to sustain arrays of quasi-spherical microdroplets, allowing the isolation and confinement of different combinations of substances and living cells. Distinct compartmentalized physical, chemical, and biological processes may take place and be monitored in each droplet. The devices permit the addition/removal of liquid and mechanical stirring by adding magnetic microparticles into each droplet. By facing the chip downward, it is possible to produce arrays of cell spheroids developed by gravity in the suspended droplets, with the potential to be used as microtissues in drug screening tests.The authors acknowledge the financial support from the FCT- Fundacao para a Ciencia e para a Tecnologia through the Ph.D. grants with the references SFRH/BD/73119/2010, SFRH/BD/69529/2010 and SFRH/BD/61390/2009. We also acknowledge the financial support of FEDER through the program Operacional Factores de Competitividade COMPETE and from FCT - the Fundacao para a Ciencia e para a Tecnologia under the project PTDC/CTM-Bio/1814/2012
Photo-polymerization damage protection by hydrogen sulfide donors for 3d-cell culture systems optimization
Photo-polymerized hydrogels are ideally suited for stem-cell based tissue regeneration and three dimensional (3D) bioprinting because they can be highly biocompatible, injectable, easy to use, and their mechanical and physical properties can be controlled. However, photo-polymerization involves the use of potentially toxic photo-initiators, exposure to ultraviolet light radiation, formation of free radicals that trigger the cross-linking reaction, and other events whose effects on cells are not yet fully understood. The purpose of this study was to examine the effects of hydrogen sulfide (H2S) in mitigating cellular toxicity of photo-polymerization caused to resident cells during the process of hydrogel formation. H2S, which is the latest discovered member of the gasotransmitter family of gaseous signalling molecules, has a number of established beneficial properties, including cell protection from oxidative damage both directly (by acting as a scavenger molecule) and indirectly (by inducing the expression of anti-oxidant proteins in the cell). Cells were exposed to slow release H2S treatment using pre-conditioning with glutathione-conjugated-garlic extract in order to mitigate toxicity during the photo-polymerization process of hydrogel formation. The protective effects of the H2S treatment were evaluated in both an enzymatic model and a 3D cell culture system using cell viability as a quantitative indicator. The protective effect of H2S treatment of cells is a promising approach to enhance cell survival in tissue engineering applications requiring photo-polymerized hydrogel scaffolds
Live reporting for hypoxia : Hypoxia sensor–modified mesenchymal stem cells as in vitro reporters
Natural oxygen gradients occur in tissues of biological organisms and also in the context of three-dimensional (3D) in vitro cultivation. Oxygen diffusion limitation and metabolic oxygen consumption by embedded cells produce areas of hypoxia in the tissue/matrix. However, reliable systems to detect oxygen gradients and cellular response to hypoxia in 3D cell culture systems are still missing. In this study, we developed a system for visualization of oxygen gradients in 3D using human adipose tissue–derived mesenchymal stem cells (hAD-MSCs) modified to stably express a fluorescent genetically engineered hypoxia sensor HRE-dUnaG. Modified cells retained their stem cell characteristics in terms of proliferation and differentiation capacity. The hypoxia-reporter cells were evaluated by fluorescence microscopy and flow cytometry under variable oxygen levels (2.5%, 5%, and 7.5% O2). We demonstrated that reporter hAD-MSCs output is sensitive to different oxygen levels and displays fast decay kinetics after reoxygenation. Additionally, the reporter cells were encapsulated in bulk hydrogels with a variable cell number, to investigate the sensor response in model 3D cell culture applications. The use of hypoxia-reporting cells based on MSCs represents a valuable tool for approaching the genuine in vivo cellular microenvironment and will allow a better understanding of the regenerative potential of AD-MSCs. © 2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LL
Tumor growth suppression induced by biomimetic silk fibroin hydrogels
Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of
cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic
shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on
how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus,
this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo
intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the
SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random
coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo
subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel
promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis
in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro
and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and
tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for
cancer research and uses of biomaterials.The authors would like to thank the Portuguese Foundation for Science and Technology (FCT) project grants OsteoCart (PTDC/CTM-BPC/115977/2009) and Tissue2Tissue (PTDC/CTM/105703/2008) which supported this study. Research leading to these results has also received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS. Le-Ping Yan was awarded a PhD scholarship from FCT (SFRH/BD/64717/2009). We also would like to thank FCT for the distinction attributed to J.M. Oliveira under the Investigador FCT program (IF/00423/2012). The authors also like to acknowledge Dr. Mariana B. Oliveira for technical assistance on the dynamic mechanical analysis of the cell-laden hydrogels
Local induction of lymphangiogenesis with engineered fibrin-binding VEGF-C promotes wound healing by increasing immune cell trafficking and matrix remodeling
Lymphangiogenesis occurs in inflammation and wound healing, yet its functional roles in these processes are not fully understood. Consequently, clinically relevant strategies for therapeutic lymphangiogenesis remain underdeveloped, particularly using growth factors. To achieve controlled, local capillary lymphangiogenesis with protein engineering and determine its effects on fluid clearance, leukocyte trafficking, and wound healing, we developed a fibrin-binding variant of vascular endothelial growth factor C (FB-VEGF-C) that is slowly released upon demand from infiltrating cells. Using a novel wound healing model, we show that implanted fibrin containing FB-VEGF-C, but not free VEGF-C, could stimulate local lymphangiogenesis in a dose-dependent manner. Importantly, the effects of FB-VEGF-C were restricted to lymphatic capillaries, with no apparent changes to blood vessels and downstream collecting vessels. Leukocyte intravasation and trafficking to lymph nodes were increased in hyperplastic lymphatics, while fluid clearance was maintained at physiological levels. In diabetic wounds, FB-VEGF-C-induced lymphangiogenesis increased extracellular matrix deposition and granulation tissue thickening, indicators of improved wound healing. Together, these results indicate that FB-VEGF-C is a promising strategy for inducing lymphangiogenesis locally, and that such lymphangiogenesis can promote wound healing by enhancing leukocyte trafficking without affecting downstream lymphatic collecting vessels. (C) 2017 The Authors. Published by Elsevier Ltd
- …
