28 research outputs found
Fast design optimization of UWB antenna with WLAN Band-Notch
In this paper, a methodology for rapid design optimization of an ultra-wideband ( UWB) monopole antenna with a lower WLAN band-notch is presented. The band-notch is realized using an open loop resonator implemented in the radiation patch of the antenna. Design optimization is a two stage process, with the first stage focused on the design of the antenna itself, and the second stage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. Both optimization stages are realized using surrogate-based optimization involving variable-fidelity electromagnetic ( EM) simulation models as well as an additive response correction ( first stage), and sequential approximate optimization ( second stage). The final antenna design is obtained at the CPU cost corresponding to only 23 high-fidelity EM antenna simulations
Performance study of multi-fidelity gradient enhanced kriging
Multi-fidelity surrogate modelling offers an efficient way to approximate computationally expensive simulations. In particular, Kriging-based surrogate models are popular for approximating deterministic data. In this work, the performance of Kriging is investigated when multi-fidelity gradient data is introduced along with multi-fidelity function data to approximate computationally expensive black-box simulations. To achieve this, the recursive CoKriging formulation is extended by incorporating multi-fidelity gradient information. This approach, denoted by Gradient-Enhanced recursive CoKriging (GECoK), is initially applied to two analytical problems. As expected, results from the analytical benchmark problems show that additional gradient information of different fidelities can significantly improve the accuracy of the Kriging model. Moreover, GECoK provides a better approximation even when the gradient information is only partially available. Further comparison between CoKriging, Gradient Enhanced Kriging, denoted by GEK, and GECoK highlights various advantages of employing single and multi-fidelity gradient data. Finally, GECoK is further applied to two real-life examples
Cost-efficient modeling of antenna structures using Gradient Enhanced Kriging
Reliable yet fast surrogate models are indispensable in the design of contemporary antenna structures. Data-driven models, e.g., based on Gaussian Processes or support-vector regression, offer sufficient flexibility and speed, however, their setup cost is large and grows very quickly with the dimensionality of the design space. In this paper, we propose cost-efficient modeling of antenna structures using Gradient-Enhanced Kriging. In our approach, the training data set contains, apart from the EM-simulation responses of the structure at hand, also derivative data at the respective training locations obtained at little extra cost using adjoint sensitivity techniques. We demonstrate that introduction of the derivative information into the model allows for considerable reduction of the model setup cost (in terms of the number of training points required) without compromising its predictive power. The Gradient-Enhanced Kriging technique is illustrated using a dielectric resonator antenna structure. Comparison with conventional Kriging interpolation is also provided
Surrogate modeling based cognitive decision engine for optimization of WLAN performance
Due to the rapid growth of wireless networks and the dearth of the electromagnetic spectrum, more interference is imposed to the wireless terminals which constrains their performance. In order to mitigate such performance degradation, this paper proposes a novel experimentally verified surrogate model based cognitive decision engine which aims at performance optimization of IEEE 802.11 links. The surrogate model takes the current state and configuration of the network as input and makes a prediction of the QoS parameter that would assist the decision engine to steer the network towards the optimal configuration. The decision engine was applied in two realistic interference scenarios where in both cases, utilization of the cognitive decision engine significantly outperformed the case where the decision engine was not deployed
Building accurate radio environment maps from multi-fidelity spectrum sensing data
In cognitive wireless networks, active monitoring of the wireless environment is often performed through advanced spectrum sensing and network sniffing. This leads to a set of spatially distributed measurements which are collected from different sensing devices. Nowadays, several interpolation methods (e.g., Kriging) are available and can be used to combine these measurements into a single globally accurate radio environment map that covers a certain geographical area. However, the calibration of multi-fidelity measurements from heterogeneous sensing devices, and the integration into a map is a challenging problem. In this paper, the auto-regressive co-Kriging model is proposed as a novel solution. The algorithm is applied to model measurements which are collected in a heterogeneous wireless testbed environment, and the effectiveness of the new methodology is validated
Appliction of nontraditional optimization techniques for airfoil shape optimization
The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer
