48 research outputs found
Multiomics analyses reveal dynamic bioenergetic pathways and functional remodeling of the heart during intermittent fasting
Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.</p
Simulation of the Performance of Solar Driven Thermoelectric Based Rotary Desiccant Wheel HVAC System
Methodology to Simulate Adsorption and Desorption Phenomena of Gasoline Fuel Vapour in Activated-Carbon Canister to Meet Post-EU6 and US EPA Global Emission Norms
Performance Enhancement of Rotary Desiccant Wheel using Novel Homogenous Composite Desiccant Designs
Abstract
Rotary solid desiccant wheels are used as sensible and latent heat recovery wheels in the Desiccant-HVAC systems. The two major types of these wheels include enthalpy (total energy recovery) wheels which remove sensible heat and latent heat from process air and transfer them to regeneration air, and dehumidification wheels which transfer a significant amount of moisture (latent heat) at the same time minimizes heat transfer. In this work a set of novel design of hybrid rotary desiccant wheel constructed using a composite homogeneous mixture of solid desiccants (multiple types of silica gel and molecular sieves) are proposed. The transport phenomena taking place in the proposed set of novel design of hybrid rotary desiccant wheel are simulated numerically using an in house finite volume method based CFD code. The performances of these wheels are compared with conventional type of wheels made of molecular sieves and silica gel, respectively. The results show that the performance of these hybrid wheels are enhanced by up to 40 % by using these novel composite wheel designs.</jats:p
