333 research outputs found
Interplay among transversity induced asymmetries in hadron leptoproduction
In the fragmentation of a transversely polarized quark several left-right
asymmetries are possible for the hadrons in the jet. When only one unpolarized
hadron is selected, it exhibits an azimuthal modulation known as Collins
effect. When a pair of oppositely charged hadrons is observed, three
asymmetries can be considered, a di-hadron asymmetry and two single hadron
asymmetries. In lepton deep inelastic scattering on transversely polarized
nucleons all these asymmetries are coupled with the transversity distribution.
From the high statistics COMPASS data on oppositely charged hadron-pair
production we have investigated for the first time the dependence of these
three asymmetries on the difference of the azimuthal angles of the two hadrons.
The similarity of transversity induced single and di-hadron asymmetries is
discussed. A new analysis of the data allows to establish quantitative
relationships among them, providing for the first time strong experimental
indication that the underlying fragmentation mechanisms are all driven by a
common physical process.Comment: 6 figure
JUNO Conceptual Design Report
The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine
the neutrino mass hierarchy using an underground liquid scintillator detector.
It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants
in Guangdong, China. The experimental hall, spanning more than 50 meters, is
under a granite mountain of over 700 m overburden. Within six years of running,
the detection of reactor antineutrinos can resolve the neutrino mass hierarchy
at a confidence level of 3-4, and determine neutrino oscillation
parameters , , and to
an accuracy of better than 1%. The JUNO detector can be also used to study
terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard
Model. The central detector contains 20,000 tons liquid scintillator with an
acrylic sphere of 35 m in diameter. 17,000 508-mm diameter PMTs with high
quantum efficiency provide 75% optical coverage. The current choice of
the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO
as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of
detected photoelectrons per MeV is larger than 1,100 and the energy resolution
is expected to be 3% at 1 MeV. The calibration system is designed to deploy
multiple sources to cover the entire energy range of reactor antineutrinos, and
to achieve a full-volume position coverage inside the detector. The veto system
is used for muon detection, muon induced background study and reduction. It
consists of a Water Cherenkov detector and a Top Tracker system. The readout
system, the detector control system and the offline system insure efficient and
stable data acquisition and processing.Comment: 328 pages, 211 figure
Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering
A semi-inclusive measurement of charged hadron multiplicities in deep
inelastic muon scattering off an isoscalar target was performed using data
collected by the COMPASS Collaboration at CERN. The following kinematic domain
is covered by the data: photon virtuality (GeV/), invariant
mass of the hadronic system GeV/, Bjorken scaling variable in the
range , fraction of the virtual photon energy carried by the
hadron in the range , square of the hadron transverse momentum
with respect to the virtual photon direction in the range 0.02 (GeV/ (GeV/). The multiplicities are presented as a
function of in three-dimensional bins of , , and
compared to previous semi-inclusive measurements. We explore the
small- region, i.e. (GeV/), where
hadron transverse momenta are expected to arise from non-perturbative effects,
and also the domain of larger , where contributions from
higher-order perturbative QCD are expected to dominate. The multiplicities are
fitted using a single-exponential function at small to study
the dependence of the average transverse momentum on , and . The power-law behaviour of the
multiplicities at large is investigated using various
functional forms. The fits describe the data reasonably well over the full
measured range.Comment: 28 pages, 20 figure
Resonance Production and S-wave in at 190 GeV/c
The COMPASS collaboration has collected the currently largest data set on
diffractively produced final states using a negative pion
beam of 190 GeV/c momentum impinging on a stationary proton target. This data
set allows for a systematic partial-wave analysis in 100 bins of three-pion
mass, GeV/c , and in 11 bins of the reduced
four-momentum transfer squared, (GeV/c) . This
two-dimensional analysis offers sensitivity to genuine one-step resonance
production, i.e. the production of a state followed by its decay, as well as to
more complex dynamical effects in nonresonant production. In this paper,
we present detailed studies on selected partial waves with , , , , and . In these waves, we observe
the well-known ground-state mesons as well as a new narrow axial-vector meson
decaying into . In addition, we present the results
of a novel method to extract the amplitude of the subsystem with
in various partial waves from the
data. Evidence is found for correlation of the and
appearing as intermediate isobars in the decay of the known
and .Comment: 96 page
Leading-order determination of the gluon polarisation from semi-inclusive deep inelastic scattering data
Using a novel analysis technique, the gluon polarisation in the nucleon is
re-evaluated using the longitudinal double-spin asymmetry measured in the cross
section of semi-inclusive single-hadron muoproduction with photon virtuality
. The data were obtained by the COMPASS experiment at
CERN using a 160 GeV/ polarised muon beam impinging on a polarised LiD
target. By analysing the full range in hadron transverse momentum ,
the different -dependences of the underlying processes are separated
using a neural-network approach. In the absence of pQCD calculations at
next-to-leading order in the selected kinematic domain, the gluon polarisation
is evaluated at leading order in pQCD at a hard scale of . It is determined in three intervals
of the nucleon momentum fraction carried by gluons, , covering the
range ~ and does not exhibit a significant
dependence on . The average over the three intervals, at
, suggests that the gluon polarisation
is positive in the measured range.Comment: 14 pages, 6 figure
Spatial structure of the geodesic acoustic mode in the FT-2 tokamak by upper hybrid resonance Doppler backscattering
Study of Silicon Photomultiplier External Cross-Talk
Optical cross-talk is a critical characteristic of Silicon Photomultipliers
(SiPMs) and represents a significant source of the excess noise factor,
exerting a substantial influence on detector performance. During the avalanche
process of SiPMs, photons generated can give rise to both internal cross-talk
within the same SiPM and external cross-talk when photons escape from one SiPM
and trigger avalanches in others. In scenarios where SiPMs are arranged in a
compact configuration and positioned facing each other, the external cross-talk
could even dominate the cross-talk phenomenon. This paper investigates two
distinct methods for measuring external cross-talk: the counting method, which
involves operating SiPMs face-to-face and measuring their coincident signals,
and the reflection method, which employs a highly reflective film attached to
the surface of the SiPMs. External cross-talk measurements have been conducted
on several types of SiPMs, including Vacuum Ultra-Violet (VUV) sensitive SiPMs
that Fondazione Bruno Kessler (FBK) and Hamamatsu Photonics Inc (HPK) produced
for nEXO as well as visible-sensitive SiPMs provided by FBK, HPK and SensL
Technologies Ltd (SenSL) for JUNO-TAO. The results reveal a significant
presence of external cross-talk in all tested SiPMs, with HPK's SiPMs
exhibiting a dominant external cross-talk component due to the implementation
of optical trenches that effectively suppress internal cross-talk. Furthermore,
we found that the number of fired pixels resulting from internal cross-talk can
be described by combining Geometric and Borel models for all tested SiPMs,
while the external cross-talk can be predicted using a pure Borel model. These
distinct probability distributions lead to different excess noise factors,
thereby impacting the detector performance in varying ways
Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target
Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain View the MathML source in the photon virtuality, 0.0045 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z -integrated K+ and K 12 multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit
- …
