2,695 research outputs found

    Zeeman-Doppler Imaging of Late-Type Stars -- The Surface Magnetic Field of II Peg

    Full text link
    Late-type stars in general possess complicated magnetic surface fields which makes their detection and in particular their modeling and reconstruction challenging. In this work we present a new Zeeman-Doppler imaging code which is especially designed for the application to late-type stars. This code uses a new multi-line cross-correlation technique by means of a principal component analysis to extract and enhance the quality of individual polarized line profiles. It implements the full polarized radiative transfer equation and uses an inversion strategy that can incorporate prior knowledge based on solar analogies. Moreover, our code utilizes a new regularization scheme which is based on local maximum entropy to allow a more appropriate reproduction of complex surface fields as those expected for late-type stars. In a first application we present Zeeman-Doppler images of II Pegasi which reveal a surprisingly large scale surface structure with one predominant (unipolar) magnetic longitude which is mainly radially oriented.Comment: Astronomische Nachrichten / Astronomical Notes Vol. 328, Issue 10, p. 104

    PCA detection and denoising of Zeeman signatures in stellar polarised spectra

    Full text link
    Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar spectropolarimetric observations. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observations is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data with a truncated basis. We propose a method to identify the number of eigenvectors for an efficient noise filtering. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze the relation between PCA and commonly used well-known techniques like line addition and least-squares deconvolution. Moreover, PCA is very robust and easy to compute.Comment: accepted to be published in A&

    Spectropolarimetric multi line analysis of stellar magnetic fields

    Full text link
    In this paper we study the feasibility of inferring the magnetic field from polarized multi-line spectra using two methods: The pseudo line approach and The PCA-ZDI approach. We use multi-line techniques, meaning that all the lines of a stellar spectrum contribute to obtain a polarization signature. The use of multiple lines dramatically increases the signal to noise ratio of these polarizations signatures. Using one technique, the pseudo-line approach, we construct the pseudo-line as the mean profile of all the individual lines. The other technique, the PCA-ZDI approach proposed recently by Semel et al. (2006) for the detection of polarized signals, combines Principle Components Analysis (PCA) and the Zeeman Do ppler Imaging technique (ZDI). This new method has a main advantage: the polarized signature is extracted using cross correlations between the stellar spectra nd functions containing the polarization properties of each line. These functions are the principal components of a database of synthetic spectra. The synthesis of the spectra of the database are obtained using the radiative transfer equations in LTE. The profiles built with the PCA-ZDI technique are denominated Multi-Zeeman-Signatures. The construction of the pseudo line as well as the Multi-Zeeman-Signatures is a powerful tool in the study of stellar and solar magnetic fields. The information of the physical parameters that governs the line formation is contained in the final polarized profiles. In particular, using inversion codes, we have shown that the magnetic field vector can be properly inferred with both approaches despite the magnetic field regime.Comment: Accepted for publication in Astronomy and Astrophysic

    Are the photospheric sunspots magnetically force-free in nature?

    Full text link
    In a force-free magnetic field, there is no interaction of field and the plasma in the surrounding atmosphere i.e., electric currents are aligned with the magnetic field, giving rise to zero Lorentz force. The computation of many magnetic parameters like magnetic energy, gradient of twist of sunspot magnetic fields (computed from the force-free parameter α\alpha), including any kind of extrapolations heavily hinge on the force-free approximation of the photospheric magnetic fields. The force-free magnetic behaviour of the photospheric sunspot fields has been examined by \cite{metc95} and \cite{moon02} ending with inconsistent results. \cite{metc95} concluded that the photospheric magnetic fields are far from the force-free nature whereas \cite{moon02} found the that the photospheric magnetic fields are not so far from the force-free nature as conventionally regarded. The accurate photospheric vector field measurements with high resolution are needed to examine the force-free nature of sunspots. We use high resolution vector magnetograms obtained from the Solar Optical Telescope/Spectro-Polarimeter (SOT/SP) aboard Hinode to inspect the force-free behaviour of the photospheric sunspot magnetic fields. Both the necessary and sufficient conditions for force-freeness are examined by checking global as well as as local nature of sunspot magnetic fields. We find that the sunspot magnetic fields are very close to the force-free approximation, although they are not completely force-free on the photosphere.Comment: 04 pages; To appear in the "Physics of Sun and star spots", Proceedings of IAU Symposium 273, eds. D.P. Choudhary and K.G. Strassmeie

    First polarimetric observations and modeling of the FeH F^4 Delta-X^4 Delta system

    Full text link
    Lines of diatomic molecules are more temperature and pressure sensitive than atomic lines, which makes them ideal tools for studying cool stellar atmospheres an internal structure of sunspots and starspots. The FeH F^4 Delta-X^4 Delta system represents such an example that exhibits in addition a large magnetic field sensitivity. The current theoretical descriptions of these transitions including the molecular constants involved are only based on intensity measurements because polarimetric observations have not been available so far, which limits their diagnostic value. We present for the first time spectropolarimetric observations of the FeH F^4 Delta-X^4 Delta system measured in sunspots to investigate their diagnostic capabilities for probing solar and stellar magnetic fields. We investigate whether the current theoretical model of FeH can reproduce the observed Stokes profiles including their magnetic properties. The polarimetric observations are compared with synthetic Stokes profiles modeled with radiative transfer calculations. This allows us to infer the temperature and the magnetic field strength of the observed sunspots. We find that the current theory successfully reproduces the magnetic properties of a large number of lines in the FeH F^4 Delta-X^4 Delta system. In a few cases the observations indicate a larger Zeeman splitting than predicted by the theory. There, our observations have provided additional constraints, which allowed us to determine empirical molecular constants. The FeH F^4 Delta-X^4 Delta system is found to be a very sensitive magnetic diagnostic tool. Polarimetric data of these lines provide us with more direct information to study the coolest parts of astrophysical objects.Comment: 4 pages, 3 figure

    Field-induced local moments around nonmagnetic impurities in metallic cuprates

    Full text link
    We consider a defect in a strongly correlated host metal and discuss, within a slave boson mean field formalism for the ttJt-t'-J model, the formation of an induced paramagnetic moment which is extended over nearby sites. We study in particular an impurity in a metallic band, suitable for modelling the optimally doped cuprates, in a regime where the impurity moment is paramagnetic. The form of the local susceptibility as a function of temperature and doping is found to agree well with recent NMR experiments, without including screening processes leading to the Kondo effect.Comment: 7 pages, submitted to Phys Rev

    Multiple views of magnetism in cool stars

    Get PDF
    Magnetic fields are regarded as a crucial element for our understanding of stellar physics. They can be studied with a variety of methods which provide complementary - and sometimes contradictory - information about the structure, strength and dynamics of the magnetic field and its role in the evolution of stars. Stellar magnetic fields can be investigated either with direct methods based on the Zeeman effect or through the observation of activity phenomena resulting from the interaction of the field with the stellar atmosphere. In this Cool Stars XVII Splinter Session we discussed the results obtained by the many ongoing studies of stellar activity and direct studies of surface magnetic fields, as well as the state- of-the-art techniques on which they are based. We show the strengths and limitations of the various approaches currently used and to point out their evolution as well as the interest of coupling various magnetism and activity proxies.Comment: 4 pages. Summary of the splinter session "Multiple views of magnetism in cool stars" held at the 17th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, June 25th 2012, Barcelona, Spain. Submitted for publication in AN 334, Eds Klaus Strassmeier and Mercedes Lopez-Morale
    corecore