24 research outputs found

    Gene expression in the rat brain: High similarity but unique differences between frontomedial-, temporal- and occipital cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The six-layered neocortex of the mammalian brain may appear largely homologous, but is in reality a modular structure of anatomically and functionally distinct areas. However, global gene expression seems to be almost identical across the cerebral cortex and only a few genes have so far been reported to show regional enrichment in specific cortical areas.</p> <p>Results</p> <p>In the present study on adult rat brain, we have corroborated the strikingly similar gene expression among cortical areas. However, differential expression analysis has allowed for the identification of 30, 24 and 11 genes enriched in frontomedial -, temporal- or occipital cortex, respectively. A large proportion of these 65 genes appear to be involved in signal transduction, including the ion channel <it>Fxyd6</it>, the neuropeptide <it>Grp </it>and the nuclear receptor <it>Rorb</it>. We also find that the majority of these genes display increased expression levels around birth and show distinct preferences for certain cortical layers and cell types in rodents.</p> <p>Conclusions</p> <p>Since specific patterns of expression often are linked to equally specialised biological functions, we propose that these cortex sub-region enriched genes are important for proper functioning of the cortical regions in question.</p

    Region-Specific Expression of Mitochondrial Complex I Genes during Murine Brain Development

    Get PDF
    Mutations in the nuclear encoded subunits of mitochondrial complex I (NADH:ubiquinone oxidoreductase) may cause circumscribed cerebral lesions ranging from degeneration of the striatal and brainstem gray matter (Leigh syndrome) to leukodystrophy. We hypothesized that such pattern of regional pathology might be due to local differences in the dependence on complex I function. Using in situ hybridization we investigated the relative expression of 33 nuclear encoded complex I subunits in different brain regions of the mouse at E11.5, E17.5, P1, P11, P28 and adult (12 weeks). With respect to timing and relative intensity of complex I gene expression we found a highly variant pattern in different regions during development. High average expression levels were detected in periods of intense neurogenesis. In cerebellar Purkinje and in hippocampal CA1/CA3 pyramidal neurons we found a second even higher peak during the period of synaptogenesis and maturation. The extraordinary dependence of these structures on complex I gene expression during synaptogenesis is in accord with our recent findings that gamma oscillations – known to be associated with higher cognitive functions of the mammalian brain – strongly depend on the complex I activity. However, with the exception of the mesencephalon, we detected only average complex I expression levels in the striatum and basal ganglia, which does not explain the exquisite vulnerability of these structures in mitochondrial disorders

    Advancing the technology development for better quality wood plastic composites: process ability study

    No full text
    Wood Plastic Composites (WPC) have advantages over natural wood such as improved stiffness, recyclability, and waste minimization. However, issues such as the difficulty of processing WPC with conventional methods, volatile emission from the wood and the composites’ lack of strength must be addressed. A system for continuous extrusion of rectangular profiles of WPC was developed and some critical processing strategies were identified. The use of a lubricant and a calibrator also improved the profile extrusion of WPC. In this work, glass was also added to improve WPC’s mechanical strength. Generally, a glass content of 2.5% appears to improve the properties but further addition does not have a significant effect. Foaming of WPC, which can enhance their properties, was investigated through studying the effect of heating time and temperature on void fraction and cell density.University of Ontario Institute of Technolog

    Investigating Cortical Inhibition in First-Degree Relatives and Probands in Schizophrenia

    No full text
    Deficits in GABAergic inhibitory neurotransmission are a reliable finding in schizophrenia (SCZ) patients. Previous studies have reported that unaffected first-degree relatives of patients with SCZ demonstrate neurophysiological abnormalities that are intermediate between probands and healthy controls. In this study, first-degree relatives of patients with SCZ and their related probands were investigated to assess frontal cortical inhibition. Long-interval cortical inhibition (LICI) was measured from the dorsolateral prefrontal cortex (DLPFC) using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG). The study presents an extended sample of 129 subjects (66 subjects have been previously reported): 19 patients with SCZ or schizoaffective disorder, 30 unaffected first-degree relatives of these SCZ patients, 13 obsessive-compulsive disorder (OCD) patients, 18 unaffected first-degree relatives of these OCD patients and 49 healthy subjects. In the DLPFC, cortical inhibition was significantly decreased in patients with SCZ compared to healthy subjects. First-degree relatives of patients with SCZ showed significantly more cortical inhibition than their SCZ probands. No differences were demonstrated between first-degree relatives of SCZ patients and healthy subjects. Taken together, these findings show that more studies are needed to establish an objective biological marker for potential diagnostic usage in severe psychiatric disorders
    corecore