393 research outputs found
Phase Composition and Defect Substructure of Strengthening Layer Surfaced on Low Alloyed Steel
The microstructure and microhardness distribution in surface of low carbon Hardox 450 steel coated with alloyed powder wires of different chemical compositions are studied. It is shown that the microhardness of 6-8 mm thickness surfaced layer exceeds that of base metal by more than 2 times. The increased mechanical properties of surfaced layer are caused by the submicro and nanoscale dispersed martensite, containing the niobium carbides Nb2C, NbC and iron borides Fe2B. In the bulk plates a dislocation substructure of the net-like type with scalar islocation density of 10^11 cm^-2 is observed. The layer surfaced with the wire containing B possesses the highest hardness. The possible mechanisms of niobium and boron carbides formation in surfacing are discusse
Quantum Oscillations of Photocurrents in HgTe Quantum Wells with Dirac and Parabolic Dispersions
We report on the observation of magneto-oscillations of terahertz radiation
induced photocurrent in HgTe/HgCdTe quantum wells (QWs) of different widths,
which are characterized by a Dirac-like, inverted and normal parabolic band
structure. The photocurrent data are accompanied by measurements of
photoresistance (photoconductivity), radiation transmission, as well as
magneto-transport. We develop a microscopic model of a cyclotron-resonance
assisted photogalvanic effect, which describes main experimental findings. We
demonstrate that the quantum oscillations of the photocurrent are caused by the
crossing of Fermi level by Landau levels resulting in the oscillations of spin
polarization and electron mobilities in spin subbands. Theory explains a
photocurrent direction reversal with the variation of magnetic field observed
in experiment. We describe the photoconductivity oscillations related with the
thermal suppression of the Shubnikov-de Haas effect.Comment: 16 pages, 13 figure
Fractography of Fatigue Fracture Surface in Silumin Subjected to Electron-Beam Processing
The surface modification of the eutectic silumin with high-intensity pulsed electron beam has been carried out. Multi-cycle fatigue tests were performed and irradiation mode made possible the increase in the silumin fatigue life more than 3.5 times was determined. Studies of the structure of the surface irradiation and surface fatigue fracture of silumin in the initial (unirradiated) state and after modification with intense pulsed electron beam were carried out by methods of scanning electron microscopy. It has been shown, that in mode of partial melting of the irradiation surface the modification process of silicon plates is accompanied by the formation of numerous large micropores along the boundary plate/matrix and microcracks located in the silicon plates. A multi-modal structure (grain size within 30-50 μm with silicon particles up to 10 [mu]m located on the boundaries) is formed in stable melting mode, as well as subgrain structure in the form of crystallization cells from 100 to 250 [mu]m in size). Formation of a multi-modal, multi-phase, submicro- and nanosize structure assisting to a significant increase in the critical length of the crack, the safety coefficient and decrease in step of cracks for loading cycle was the main cause for the increase in silumin fatigue life
- …
