77 research outputs found
The 2000 Tottori (Japan) earthquake: triggering of the largest aftershock and constraints on Dc.
The goal of this study is to investigate the effect of the static and dynamic stress changes on the triggering of faults under slip-dependent friction law. We specifically focus on the 2000 Western Tottori (Japan) earthquake and on the triggering of its largest aftershock. To this end we compute the dynamic and static stress changes caused by the 2000 Western Tottori (Japan) earthquake for which a good knowledge of the rupture history and aftershock sequence exists. We compute the coseismic stress evolution caused by the mainshock fault, on the fault plane of the largest aftershock located 20 km SW of the mainshock. The static stress changes cannot explain the occurrence of the largest aftershock, located in a stress shadow whatever the friction coefficient that we use. Hence we propose that dynamic stresses have promoted the triggering of the largest aftershock. Using the discrete wavenumber and the reflectivity methods we compute the complete time-dependent coulomb failure function CFF(t). We investigate the influence of the adopted coefficient of friction μ, the depth and the location of the hypocenter on the shape of the CFF(t). Finally, using a non-linear slip dependent friction law with a stability/instability transition, we constrain the frictional properties of the largest aftershock fault plane knowing the state of stress on the fault and the time delay of 48 hours. We propose that Dc must be greater than 0.3 m
Seismic tomography of the area of the 2010 Beni-Ilmane earthquake sequence, north-central Algeria
The region of Beni-Ilmane (District of M’sila, north-central Algeria) was the site of an earthquake sequence that started on 14 May 2010. This sequence, which lasted several months, was triggered by conjugate E–W reverse and N–S dextral faulting. To image the crustal structure of these active faults, we used a set of 1406 well located aftershocks events and applied the local tomography software (LOTOS) algorithm, which includes absolute source location, optimization of the initial 1D velocity model, and iterative tomographic inversion for 3D seismic P- and S-wave velocities (and the Vp/Vs ratio), and source parameters. The patterns of P-wave low-velocity anomalies correspond to the alignments of faults determined from geological evidence, and the P-wave high-velocity anomalies may represent rigid blocks of the upper crust that are not deformed by regional stresses. The S-wave low-velocity anomalies coincide with the aftershock area, where relatively high values of Vp/Vs ratio (1.78) are observed compared with values in the surrounding areas (1.62–1.66). These high values may indicate high fluid contents in the aftershock area. These fluids could have been released from deeper levels by fault movements during earthquakes and migrated rapidly upwards. This hypothesis is supported by vertical sections across the study area show that the major Vp/Vs anomalies are located above the seismicity clusters
Liquefaction Potential and Vs30 Structure in the Middle-Chelif Basin, Northwestern Algeria, by Ambient Vibration Data Inversion
The Middle-Chelif basin, in northwestern Algeria, is located in a seismically active region. In its western part lies the El-Asnam fault, a thrust fault responsible for several strong earthquakes. The most important being the El-Asnam earthquake (Ms = 7.3) of 1980. In the present study, ambient vibration data with single-station and array techniques were used to investigate the dynamic properties of the ground and to estimate the Vs30 structure in the main cities of the basin. Soil resonance frequencies vary from 1.2 to 8.3 Hz with a maximum amplitude of 8.7 in. Collapsing behavior has also been demonstrated west of the city of El-Attaf, reflecting a strong potential for liquefaction. A Vs30 variation map and a soil classification for each city were obtained mainly by inversion of the HVSR and Rayleigh wave dispersion curves. Finally, an empirical prediction law of Vs30 for the Middle-Chelif basin was proposed
Shallow S-Wave Velocity Structure in the Middle-Chelif Basin, Algeria, Using Ambient Vibration Single-Station and Array Measurements
In order to better assess the seismic hazard in the northern region of Algeria, the shear-wave velocity structure in the Middle-Chelif Basin is estimated using ambient vibration single-station and array measurements. The Middle-Chelif Basin is located in the central part of the Chelif Basin, the largest of the Neogene sedimentary basins in northern Algeria. This basin hosts the El-Asnam fault, one of the most important active faults in the Mediterranean area. In this seismically active region, most towns and villages are built on large unconsolidated sedimentary covers. Application of the horizontal-to-vertical spectral ratio (HVSR) technique at 164 sites, and frequency–wavenumber (F–K) analysis at 7 other sites, allowed for the estimation of the ground resonance frequencies, shear-wave velocity profiles, and sedimentary cover thicknesses. The electrical resistivity tomography method was used at some sites to further constrain the thickness of the superficial sedimentary layers. The soil resonance frequencies range from 0.75 Hz to 12 Hz and the maximum frequency peak amplitude is 6.2. The structure of the estimated shear-wave velocities is presented in some places as 2D profiles to help interpret the existing faults. The ambient vibration data allowed us to estimate the maximum depth in the Middle-Chelif Basin, which is 760 m near the city of El-Abadia.This study was funded by the Consellería de Participación, Transparencia, Cooperación y Calidad Democrática de la Generalitat Valenciana, and by Research Group VIGROB-116 (University of Alicante)
A Shear-Wave Velocity Model in the City of Oued-Fodda (Northern Algeria) from Rayleigh Wave Ellipticity Inversion
The city of Oued-Fodda is located in north-central Algeria on the margins of the Middle-Cheliff Basin. This region has suffered several destructive earthquakes. The strongest was the 1980 El-Asnam earthquake (Ms7.3), whose causative fault was located about 1 km north of the city of Oued-Fodda. Therefore, a good knowledge of the soil characteristics in this city may allow a better evaluation of the seismic risk and help to minimize damages in the future. With this objective, a detailed microzonation study of Oued-Fodda has been carried out in this study. For that, the horizontal-to-vertical spectral ratio (HVSR) method has been applied on 102 sites along the city, estimating the soil fundamental frequencies and their corresponding amplitudes. Besides, the Rayleigh wave ellipticity inversion has been accomplished in order to estimate the corresponding Vs profiles and provide two cross-sections of the geology under the city. In the central part of the city, high-frequency peaks are observed, between 12.5 and 15 Hz, which correspond to impedance contrasts at shallow depth (<20 m). In the surrounding plain, two clear peaks are identified in the ranges 1.8–3.5 Hz (fundamental frequencies) and 6.5–15 Hz (secondary peaks)
Spatial correlation of aftershock locations and on-fault main shock properties
[1] We quantify the correlation between spatial patterns of aftershock hypocenter locations and the distribution of coseismic slip and stress drop on a main shock fault plane using two nonstandard statistical tests. Test T1 evaluates if aftershock hypocenters are located in low‐slip regions (hypothesis H1), test T2 evaluates if aftershock hypocenters occur in regions of increased shear stress (hypothesis H2). In the tests, we seek to reject the null hypotheses H0: Aftershock hypocenters are not correlated with (1) low‐slip regions or (2) regions of increased shear stress, respectively. We tested the hypotheses on four strike‐slip events for which multiple earthquake catalogs and multiple finite fault source models of varying accuracy exist. Because we want to retain earthquake clustering as the fundamental feature of aftershock seismicity, we generate slip distributions using a random spatial field model and derive the stress drop distributions instead of generating seismicity catalogs. We account for uncertainties in the aftershock locations by simulating them within their location error bounds. Our findings imply that aftershocks are preferentially located in regions of low‐slip (u ≤ equation imageu max) and of increased shear stress (Δσ < 0). In particular, the correlation is more significant for relocated than for general network aftershock catalogs. However, the results show that stress drop patterns provide less information content on aftershock locations. This implies that static shear stress change of the main shock may not be the governing process for aftershock genesis.ISSN:2169-9313ISSN:0148-0227ISSN:2169-935
Stress transfer among en echelon and opposing thrusts and tear faults : triggering caused by the 2003 Mw = 6.9 Zemmouri, Algeria, earthquake
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): B03305, doi:10.1029/2010JB007654.The essential features of stress interaction among earthquakes on en echelon thrusts and tear faults were investigated, first through idealized examples and then by study of thrust faulting in Algeria. We calculated coseismic stress changes caused by the 2003 Mw = 6.9 Zemmouri earthquake, finding that a large majority of the Zemmouri afterslip sites were brought several bars closer to Coulomb failure by the coseismic stresses, while the majority of aftershock nodal planes were brought closer to failure by an average of ∼2 bars. Further, we calculated that the shallow portions of the adjacent Thenia tear fault, which sustained ∼0.25 m slip, were brought >2 bars closer to failure. We calculated that the Coulomb stress increased by 1.5 bars on the deeper portions of the adjacent Boumerdes thrust, which lies just 10–20 km from the city of Algiers; both the Boumerdes and Thenia faults were illuminated by aftershocks. Over the next 6 years, the entire south dipping thrust system extending 80 km to the southwest experienced an increased rate of seismicity. The stress also increased by 0.4 bar on the east Sahel thrust fault west of the Zemmouri rupture. Algiers suffered large damaging earthquakes in A.D. 1365 and 1716 and is today home to 3 million people. If these shocks occurred on the east Sahel fault and if it has a ∼2 mm/yr tectonic loading rate, then enough loading has accumulated to produce a Mw = 6.6–6.9 shock today. Thus, these potentially lethal faults need better understanding of their slip rate and earthquake history.Funding by the U.S. Office of Foreign
Disaster Assistance of the U.S. Agency for International Development is
gratefully acknowledged. Additional funding was provided by the INSU
research project ACI Cat‐Nat Risque Sismique de la Région d’Alger. S.
Belabbes was supported by the Algerian Ministry of Higher Education
and Research
Caractérisation de la source sismique à partir des données en champ proche. Application aux séismes de Tottori (Japon) et Boumerdes (Algérie)
Isabelle Manighetti,Anne Deschamps,Jacques Déverchère,Karim Yelles,Hideo Aochi,Fabrice Cotton,Michel Campillo.The two earthquakes, which we chose to study in this thesis, are all the two produced on hidden and ignored faults. We used all the data available to specify the localization and the geometry of the faults having played at the time of the two earthquakes. The Tottori earthquake occurred on a strike-slip fault, the slip is superficial but no clear trace was observed on the surface. All the inversed models show a slip at the top of the fault thus contradicting the observations on the surface. We tested several models buried (compatible with the observations on the surface) at various depths. The results show that when the slip is authorized to occur close to surface, the agreement with the data is appreciably improved. These tests confirm that the slip occurred near to surface. The projection of the aftershocks on the fault plane shows that the distribution of the slip on the fault is controlled by a variation of the properties of the fault with the depth. The rupture during this earthquake seems to stop when meeting a perpendicular segment of fault. The same phenomenon (stopped rupture) is observed during the earthquake of Boumerdes. The localization of the fault of this event is possible due to GPS data. The position of fault suggested in this study, explains the observations well. The distribution of the slip on the fault after a two-step inversion shows that the rupture is bilateral with two zones of large slip. The calculation of the Coulomb stress variations shows a loading of the NW part of the Thénia fault, which is supposed to play a role in the stop of the rupture.Les deux séismes que nous avons choisis d'étudier se sont tous les deux produits sur des failles cachées et ignorées. Nous avons utilisé toutes les données disponibles pour préciser la localisation et la géométrie des failles ayant joué lors des deux séismes. Le séisme de Tottori s'est produit sur une faille en décrochement, le glissement est superficiel mais aucune trace claire n'a été observée en surface. Tous les modèles inversés montrent un glissement au sommet de la faille contredisant ainsi les observations en surface. Nous avons testé plusieurs modèles enterrés (compatibles avec les observations en surface) à différentes profondeurs. Les résultats montrent que lorsque le glissement est autorisé à se produire près de la surface, l'accord aux données est sensiblement amélioré. Ces tests confirment que le glissement s'est produit proche de la surface. La projection des répliques sur le plan de faille montre que la distribution du glissement sur la faille est contrôlée par une variation des propriétés de le faille avec la profondeur. La rupture lors de ce séisme semble s'arrêter à l'intersection avec un segment de faille perpendiculaire. Le même phénomène est observé pendant le séisme de Boumerdes. La localisation précise de la faille lors de cet événement est possible grâce aux données GPS. La position de faille proposée explique bien les observations. La distribution du glissement sur la faille après inversion en deux étapes, montre que la rupture est bilatérale avec deux zones de large glissement. Le calcul de la variation de contraintes de Coulomb, montre un chargement de la partie NW de la faille de Thénia, supposée jouer un rôle dans l'arrêt de la rupture
The European Migratory Crisis and the Legal Pressure on the States
A dissertation on the States´ legal struggle to respond to the migratory pressure in compliance with human rights provisions
- …
