12,143 research outputs found
Field Induced Supersolid Phase in Spin-One Heisenberg Models
We use quantum Monte Carlo methods to demonstrate that the quantum phase
diagram of the S=1 Heisenberg model with uniaxial anisotropy contains an
extended supersolid phase. We also show that this Hamiltonian is a particular
case of a more general and ubiquitous model that describes the low energy
spectrum of a class of {\it isotropic} and {\it frustrated} spin systems. This
crucial result provides the required guidance for finding experimental
realizations of a spin supersolid state.Comment: 4 pages, 4 figure
The Semiclassical Limit for and Gauge Theory on the Torus
We prove that for and quantum gauge theory on a torus,
holonomy expectation values with respect to the Yang-Mills measure d\mu_T(\o)
=N_T^{-1}e^{-S_{YM}(\o)/T}[{\cal D}\o] converge, as , to
integrals with respect to a symplectic volume measure on the moduli
space of flat connections on the bundle. These moduli spaces and the symplectic
structures are described explicitly.Comment: 18 page
A projection operator approach to the Bose-Hubbard model
We develop a projection operator formalism for studying both the zero
temperature equilibrium phase diagram and the non-equilibrium dynamics of the
Bose-Hubbard model. Our work, which constitutes an extension of Phys. Rev.
Lett. {\bf 106}, 095702 (2011), shows that the method provides an accurate
description of the equilibrium zero temperature phase diagram of the
Bose-Hubbard model for several lattices in two- and three-dimensions (2D and
3D). We show that the accuracy of this method increases with the coordination
number of the lattice and reaches to within 0.5% of quantum Monte Carlo
data for lattices with . We compute the excitation spectra of the bosons
using this method in the Mott and the superfluid phases and compare our results
with mean-field theory. We also show that the same method may be used to
analyze the non-equilibrium dynamics of the model both in the Mott phase and
near the superfluid-insulator quantum critical point where the hopping
amplitude and the on-site interaction satisfy . In
particular, we study the non-equilibrium dynamics of the model both subsequent
to a sudden quench of the hopping amplitude and during a ramp from to
characterized by a ramp time and exponent : . We compute the wavefunction overlap , the
residual energy , the superfluid order parameter , the equal-time
order parameter correlation function , and the defect formation
probability for the above-mentioned protocols and provide a comparison of
our results to their mean-field counterparts. We find that , , and do
not exhibit the expected universal scaling. We explain this absence of
universality and show that our results for linear ramps compare well with the
recent experimental observations.Comment: v2; new references and new sections adde
Chemotactic predator-prey dynamics
A discrete chemotactic predator-prey model is proposed in which the prey
secrets a diffusing chemical which is sensed by the predator and vice versa.
Two dynamical states corresponding to catching and escaping are identified and
it is shown that steady hunting is unstable. For the escape process, the
predator-prey distance is diffusive for short times but exhibits a transient
subdiffusive behavior which scales as a power law with time and
ultimately crosses over to diffusion again. This allows to classify the
motility and dynamics of various predatory bacteria and phagocytes. In
particular, there is a distinct region in the parameter space where they prove
to be infallible predators.Comment: 4 pages, 4 figure
Spin Supersolid in Anisotropic Spin-One Heisenberg Chain
We consider an S=1 Heisenberg chain with strong exchange (Delta) and
single--ion uniaxial anisotropy (D) in a magnetic field (B) along the symmetry
axis. The low energy spectrum is described by an effective S=1/2 XXZ model that
acts on two different low energy sectors for a given window of fields. The
vacuum of each sector exhibits Ising-like antiferromagnetic ordering that
coexists with the finite spin stiffness obtained from the exact solution of the
effective XXZ model. In this way, we demonstrate the existence of a spin
supersolid phase. We also compute the full Delta-B quantum phase diagram by
means of a quantum Monte Carlo simulation.Comment: 4+ pages, 2 fig
SLIQ: Simple Linear Inequalities for Efficient Contig Scaffolding
Scaffolding is an important subproblem in "de novo" genome assembly in which
mate pair data are used to construct a linear sequence of contigs separated by
gaps. Here we present SLIQ, a set of simple linear inequalities derived from
the geometry of contigs on the line that can be used to predict the relative
positions and orientations of contigs from individual mate pair reads and thus
produce a contig digraph. The SLIQ inequalities can also filter out unreliable
mate pairs and can be used as a preprocessing step for any scaffolding
algorithm. We tested the SLIQ inequalities on five real data sets ranging in
complexity from simple bacterial genomes to complex mammalian genomes and
compared the results to the majority voting procedure used by many other
scaffolding algorithms. SLIQ predicted the relative positions and orientations
of the contigs with high accuracy in all cases and gave more accurate position
predictions than majority voting for complex genomes, in particular the human
genome. Finally, we present a simple scaffolding algorithm that produces linear
scaffolds given a contig digraph. We show that our algorithm is very efficient
compared to other scaffolding algorithms while maintaining high accuracy in
predicting both contig positions and orientations for real data sets.Comment: 16 pages, 6 figures, 7 table
Non-equilibrium dynamics of the Bose-Hubbard model: A projection operator approach
We study the phase diagram and non-equilibrium dynamics, both subsequent to a
sudden quench of the hopping amplitude and during a ramp
with ramp time , of the Bose-Hubbard model at zero temperature using a
projection operator formalism which allows us to incorporate the effects of
quantum fluctuations beyond mean-field approximations in the strong coupling
regime. Our formalism yields a phase diagram which provides a near exact match
with quantum Monte Carlo results in three dimensions. We also compute the
residual energy , the superfluid order parameter , the equal-time
order parameter correlation function , and the wavefunction overlap
which yields the defect formation probability during non-equilibrium
dynamics of the model. We find that , , and do not exhibit the
expected universal scaling. We explain this absence of universality and show
that our results compare well with recent experiments.Comment: Replaced with the accepted version, added one figure. 4 pages, 4
figures, to appear in Phys. Rev. Let
Observation of R-Band Variability of L Dwarfs
We report, for the first time, photometric variability of L dwarfs in
band. Out of three L1 dwarfs (2MASS 1300+19, 2MASS 1439+19, and 2MASS 1658+70)
observed, we have detected R band variability in 2MASS 1300+19 and 2MASS
1439+19. The objects exhibit variability of amplitude ranging from 0.01 mag to
0.02 mag. Object 2MASS 1658+70, turns out to be non-variable in both and
band. However, more observations are needed to infer its variability. No
periodic behaviour in the variability is found from the two L1 dwarfs that are
variable. All the three L1 dwarfs have either negligible or no
activity. In the absence of any direct evidence for the presence of
sufficiently strong magnetic field, the detection of polarization at the
optical favors the presence of dust in the atmosphere of L dwarfs. We suggest
that the observed band photometric variability is most likely due to
atmospheric dust activity.Comment: 13 pages (latex, aastex style) including 3 eps figures. Accepted for
publication in The Astrophysical Journal Letter
- …
