99 research outputs found
Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13)
We describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13 Submissions were made by three free-modelling methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network. Two systems assembled fragments produced by a generative neural network, one using scores from a network trained to regress GDT_TS. The third system shows that simple gradient descent on a properly constructed potential is able to perform on-par with more expensive traditional search techniques and without requiring domain segmentation. In the CASP13 free-modelling assessors' ranking by summed z-scores, this system scored highest with 68.3 vs 48.2 for the next closest group. (An average GDT_TS of 61.4.) The system produced high-accuracy structures (with GDT_TS scores of 70 or higher) for 11 out of 43 free-modelling domains. Despite not explicitly using template information, the results in the template category were comparable to the best performing template-based methods
Knee arthrodesis with the Ilizarov external fixator as treatment for septic failure of knee arthroplasty
A large-scale study on the effects of sex on gray matter asymmetry
Research on sex-related brain asymmetries has not yielded consistent results. Despite its importance to further understanding of normal brain development and mental disorders, the field remains relatively unexplored. Here we employ a recently developed asymmetry measure, based on the Dice coefficient, to detect sex-related gray matter asymmetries in a sample of 457 healthy participants (266 men and 191 women) obtained from 5 independent databases. Results show that women’s brains are more globally symmetric than men’s (p < 0.001). Although the new measure accounts for asymmetries distributed all over the brain, several specific structures were identified as systematically more symmetric in women, such as the thalamus and the cerebellum, among other structures, some of which are typically involved in language production. These sex-related asymmetry differences may be defined at the neurodevelopmental stage and could be associated with functional and cognitive sex differences, as well as with proneness to develop a mental disorder
A review of silhouette extraction algorithms for use within visual hull pipelines
© 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group. Markerless motion capture would permit the study of human biomechanics in environments where marker-based systems are impractical, e.g. outdoors or underwater. The visual hull tool may enable such data to be recorded, but it requires the accurate detection of the silhouette of the object in multiple camera views. This paper reviews the top-performing algorithms available to date for silhouette extraction, with the visual hull in mind as the downstream application; the rationale is that higher-quality silhouettes would lead to higher-quality visual hulls, and consequently better measurement of movement. This paper is the first attempt in the literature to compare silhouette extraction algorithms that belong to different fields of Computer Vision, namely background subtraction, semantic segmentation, and multi-view segmentation. It was found that several algorithms exist that would be substantial improvements over the silhouette extraction algorithms traditionally used in visual hull pipelines. In particular, FgSegNet v2 (a background subtraction algorithm), DeepLabv3+ JFT (a semantic segmentation algorithm), and Djelouah 2013 (a multi-view segmentation algorithm) are the most accurate and promising methods for the extraction of silhouettes from 2D images to date, and could seamlessly be integrated within a visual hull pipeline for studies of human movement or biomechanics
Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry
BACKGROUND: Structure elucidation of unknown small molecules by mass spectrometry is a challenge despite advances in instrumentation. The first crucial step is to obtain correct elemental compositions. In order to automatically constrain the thousands of possible candidate structures, rules need to be developed to select the most likely and chemically correct molecular formulas. RESULTS: An algorithm for filtering molecular formulas is derived from seven heuristic rules: (1) restrictions for the number of elements, (2) LEWIS and SENIOR chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of nitrogen, oxygen, phosphor, and sulphur versus carbon, (6) element ratio probabilities and (7) presence of trimethylsilylated compounds. Formulas are ranked according to their isotopic patterns and subsequently constrained by presence in public chemical databases. The seven rules were developed on 68,237 existing molecular formulas and were validated in four experiments. First, 432,968 formulas covering five million PubChem database entries were checked for consistency. Only 0.6% of these compounds did not pass all rules. Next, the rules were shown to effectively reducing the complement all eight billion theoretically possible C, H, N, S, O, P-formulas up to 2000 Da to only 623 million most probable elemental compositions. Thirdly 6,000 pharmaceutical, toxic and natural compounds were selected from DrugBank, TSCA and DNP databases. The correct formulas were retrieved as top hit at 80–99% probability when assuming data acquisition with complete resolution of unique compounds and 5% absolute isotope ratio deviation and 3 ppm mass accuracy. Last, some exemplary compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and by gas chromatography-time of flight mass spectrometry. In each case, the correct formula was ranked as top hit when combining the seven rules with database queries. CONCLUSION: The seven rules enable an automatic exclusion of molecular formulas which are either wrong or which contain unlikely high or low number of elements. The correct molecular formula is assigned with a probability of 98% if the formula exists in a compound database. For truly novel compounds that are not present in databases, the correct formula is found in the first three hits with a probability of 65–81%. Corresponding software and supplemental data are available for downloads from the authors' website
EAACI position paper on occupational rhinitis
The present document is the result of a consensus reached by a panel of experts from European and non-European countries on Occupational Rhinitis (OR), a disease of emerging relevance which has received little attention in comparison to occupational asthma. The document covers the main items of OR including epidemiology, diagnosis, management, socio-economic impact, preventive strategies and medicolegal issues. An operational definition and classification of OR tailored on that of occupational asthma, as well as a diagnostic algorithm based on steps allowing for different levels of diagnostic evidence are proposed. The needs for future research are pointed out. Key messages are issued for each item
The evolution of nursing in Australian general practice: a comparative analysis of workforce surveys ten years on
Differential involvement of the gamma-synuclein in cognitive abilities on the model of knockout mice
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
- …
