2,805 research outputs found

    Existence of anticipatory, complete and lag synchronizations in time-delay systems

    Get PDF
    Existence of different kinds of synchronizations, namely anticipatory, complete and lag type synchronizations (both exact and approximate), are shown to be possible in time-delay coupled piecewise linear systems. We deduce stability condition for synchronization of such unidirectionally coupled systems following Krasovskii-Lyapunov theory. Transition from anticipatory to lag synchronization via complete synchronization as a function of coupling delay is discussed. The existence of exact synchronization is preceded by a region of approximate synchronization from desynchronized state as a function of a system parameter, whose value determines the stability condition for synchronization. The results are corroborated by the nature of similarity functions. A new type of oscillating synchronization that oscillates between anticipatory, complete and lag synchronization, is identified as a consequence of delay time modulation with suitable stability condition.Comment: 5 Figures 9 page

    Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems

    Get PDF
    Existence of a new type of oscillating synchronization that oscillates between three different types of synchronizations (anticipatory, complete and lag synchronizations) is identified in unidirectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipatory, intermittent lag and complete synchronizations are shown to exist in the same system with identical delay time modulations in both the delays. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay with suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations are characterized by the minimum of similarity functions and the intermittent behavior is characterized by a universal asymptotic 3/2-{3/2} power law distribution. It is also shown that the delay time carved out of the trajectories of the time-delay system with periodic delay time modulation cannot be estimated using conventional methods, thereby reducing the possibility of decoding the message by phase space reconstruction.Comment: accepted for publication in CHAOS, revised in response to referees comment

    Phase Synchronization in Unidirectionally Coupled Ikeda Time-delay Systems

    Get PDF
    Phase synchronization in unidirectionally coupled Ikeda time-delay systems exhibiting non-phase-coherent hyperchaotic attractors of complex topology with highly interwoven trajectories is studied. It is shown that in this set of coupled systems phase synchronization (PS) does exist in a range of the coupling strength which is preceded by a transition regime (approximate PS) and a nonsynchronous regime. However, exact generalized synchronization does not seem to occur in the coupled Ikeda systems (for the range of parameters we have studied) even for large coupling strength, in contrast to our earlier studies in coupled piecewise-linear and Mackey-Glass systems \cite{dvskml2006,dvskml2008}. The above transitions are characterized in terms of recurrence based indices, namely generalized autocorrelation function P(t)P(t), correlation of probability of recurrence (CPR), joint probability of recurrence (JPR) and similarity of probability of recurrence (SPR). The existence of phase synchronization is also further confirmed by typical transitions in the Lyapunov exponents of the coupled Ikeda time-delay systems and also using the concept of localized sets.Comment: 10 pages, 7 figure

    Global and Partial Phase Synchronizations in Arrays of Piecewise Linear Time-Delay Systems

    Full text link
    In this paper, we report the identification of global and partial phase synchronizations in linear arrays of unidirectionally coupled piecewise linear time-delay systems with two different coupling configurations. In particular, in a linear array with open end boundary conditions, global phase synchronization (GPS) is achieved by a sequential synchronization as a function of the coupling strength (a second order transition). Further, the asynchronous ones in the array with respect to the main sequentially synchronized cluster organize themselves to form clusters before they achieve synchronization with the main cluster. On the other hand, in a linear array with closed end boundary conditions (ring topology), partial phase synchronization (PPS) is achieved by forming different groups of phase synchronized clusters above some threshold value of the coupling strength (a first order transition) where they continue to be in a stable PPS state. We confirm the occurrence of both global and partial phase synchronizations in two different piecewise linear time-delay systems using various numerical methods.Comment: 26 pages, 25 figures, To Appear in International Journal of Bifurcation and Chaos, Vol. 22, No. 7 pp. 1250178 (1-25). arXiv admin note: substantial text overlap with arXiv:1007.280

    Transition from anticipatory to lag synchronization via complete synchronization in time-delay systems

    Get PDF
    The existence of anticipatory, complete and lag synchronization in a single system having two different time-delays, that is feedback delay τ1\tau_1 and coupling delay τ2\tau_2, is identified. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay τ2\tau_2 with suitable stability condition is discussed. The existence of anticipatory and lag synchronization is characterized both by the minimum of similarity function and the transition from on-off intermittency to periodic structure in laminar phase distribution.Comment: 14 Pages and 12 Figure
    corecore