1,700 research outputs found

    Solvation simplified

    Get PDF
    The effects of solvents on chemical phenomena is complex because there are various solute-solvent interaction mechanisms. Solvatochromism refers to the effects of solvents on the spectra of probes. The study of this phenomenon sheds light on the relative importance of the solvation mechanisms. Solvation in pure solvents is quantitatively analyzed in terms of a multi-parameter equation. In binary solvent mixtures, solvation is analyzed by considering the organic solvent, S, water, W, and a 1:1 hydrogen bonded species (S-W). The applications of solvatochromism to understand distinct chemical phenomena, reactivity and swelling of cellulose, is briefly discussed.(FAPESP) São Paulo Research FoundationCNPq National Council for Scientific and Technological Researc

    Experimental behavior of full-scale exterior beam-column space joints retrofitted by ferrocement layers under cyclic loading

    Get PDF
    A majority of the traditional reinforced concrete frame buildings, existing across the Middle East, lack adequate confinement in beam-column joints, or in other words, are shear deficient because they were constructed before the introduction of seismic codes for construction. This research studies the experimental behavior of full-scale beam-column space (three-dimensional) joints under displacement-controlled cyclic loading. Eleven joint specimens, included a traditionally reinforced one (without adequate shear reinforcement), a reference one with sufficient shear reinforcement according to ACI 318, and nine specimens retrofitted by ferrocement layers, were experimentally tested to evaluate a retrofit technique for strengthening shear deficient beam column joints. The studied variables were the number of layers, orientation angle of expanded wire mesh per layer, and presence of steel angles in the corners of joint specimen prior to wrapping with ferrocement layers. The experimental results showed that proper shear reinforcement for the test joints, according to ACI 318, enhanced the behavior of the specimen over that of the traditionally reinforced specimens without adequate shear reinforcement. The joints retrofitted by ferrocement layers showed higher ultimate capacity, higher ultimate displacement prior to failure (better ductility), and they did not suffer heavily damage as observed for the traditionally reinforced one. Increasing the number of ferrocement layers for retrofitted specimens led to improving performance for such specimens compared to the traditionally reinforced ones in terms of enhancing the ultimate capacity and ultimate displacement. Specimens retrofitted by ferrocement layers reinforced by expanded wire mesh of 60° orientation angle showed slightly better performance than those of 45° orientation angles. Retrofitting using steel angles in addition to ferrocement layers improves the seismic performance of the specimens, achieves better stability for stiffness degradation, attains higher capacity of the dissipated energy, and reduces the vulnerability of joints to excessive damage. Based on the experimental work in this study, it is recommended to retrofit beam-column joint specimens by two ferrocement layers in addition to steel angles as stiffeners taking the orientation angle of expanded wire mesh into consideration. Keywords: Retrofitting, Beam-column space joints, Ferrocement layers, Orientation of expanded wire mesh, Ultimate capacity, Stiffness degradation, Cyclic loading, Shear deficient, Traditionally reinforced building

    Changes in Trunk Appearance After Scoliosis Spinal Surgery and Their Relation to Changes in Spinal Measurements

    Get PDF
    Study Design Retrospective study of surgical outcome. Objectives To evaluate quantitatively the changes in trunk surface deformities after scoliosis spinal surgery in Lenke 1A adolescent idiopathic scoliosis (AIS) patients and to compare it with changes in spinal measurements. Summary of Background Data Most studies documenting scoliosis surgical outcome used either radiographs to evaluate changes in the spinal curve or questionnaires to assess patients health-related quality of life. Because improving trunk appearance is a major reason for patients and their parents to seek treatment, this study focuses on postoperative changes in trunk surface deformities. Recently, a novel approach to quantify trunk deformities in a reliable, automatic, and noninvasive way has been proposed. Methods Forty-nine adolescents with Lenke 1A idiopathic scoliosis treated surgically were included. The back surface rotation and trunk lateral shift were computed on trunk surface acquisitions before and at least 6 months after surgery. We analyzed the effect of age, height, weight, curve severity, and flexibility before surgery, length of follow-up, and the surgical technique. For 25 patients with available three-dimensional (3D) spinal reconstructions, we compared changes in trunk deformities with changes in two-dimensional (2D) and 3D spinal measurements. Results The mean correction rates for the back surface rotation and the trunk lateral shift are 18% and 50%, respectively. Only the surgical technique had a significant effect on the correction rate of the back surface rotation. Direct vertebral derotation and reduction by spine translation provide a better correction of the rib hump (22% and 31% respectively) than the classic rod rotation technique (8%). The reductions of the lumbar Cobb angle and the apical vertebrae transverse rotation explain, respectively, up to 17% and 16% the reduction of the back surface rotation. Conclusions Current surgical techniques perform well in realigning the trunk; however, the correction of the deformity in the transverse plane proves to be more challenging. More analysis on the positive effect of vertebral derotation on the rib hump correction is needed. Level of evidence III.Natural Sciences and Engineering Research Council of Canada (Grant # 222860-2012RGPIN) and MENTOR, a strategic training program of the Canadian Institutes of Health Research

    Multilevel Analysis of Trunk Surface Measurements for Noninvasive Assessment of Scoliosis Deformities

    Full text link
    Study Design. Reliability study. Objectives. To assess between-acquisition reliability of new multilevel trunk cross sections measurements, in order to define what is a real change when comparing 2 trunk surface acquisitions of a same patient, before and after surgery or throughout the clinical monitoring. Summary of Background Data. Several cross-sectional surface measurements have been proposed in the literature for noninvasive assessment of trunk deformity in patients with adolescent idiopathic scoliosis (AIS). However, only the maximum values along the trunk are evaluated and used for monitoring progression and assessing treatment outcome. Methods. Back surface rotation (BSR), trunk rotation (TR), and coronal and sagittal trunk deviation are computed on 300 cross sections of the trunk. Each set of 300 measures is represented as a single functional data, using a set of basis functions. To evaluate between-acquisition variability at all trunk levels, a test-retest reliability study is conducted on 35 patients with AIS. A functional correlation analysis is also carried out to evaluate any redundancy between the measurements. Results. Each set of 300 measures was successfully described using only 10 basis functions. The test-retest reliability of the functional measurements is good to very good all over the trunk, except above the shoulders level. The typical errors of measurement are between 1.20° and 2.2° for the rotational measures and between 2 and 6 mm for deviation measures. There is a very strong correlation between BSR and TR all over the trunk, a moderate correlation between coronal trunk deviation and both BSR and TR, and no correlation between sagittal trunk deviation and any other measurement. Conclusion. This novel representation of trunk surface measurements allows for a global assessment of trunk surface deformity. Multilevel trunk measurements provide a broader perspective of the trunk deformity and allow a reliable multilevel monitoring during clinical follow-up of patients with AIS and a reliable assessment of the esthetic outcome after surgery.CIHR /IRS

    Noninvasive Clinical Assessment of Trunk Deformities Associated With Scoliosis

    Get PDF
    Besides the spinal deformity, scoliosis modifies notably the general appearance of the trunk resulting in trunk rotation, imbalance, and asymmetries that constitutes patients' major concern. Existing classifications of scoliosis, based on the type of spinal curve as depicted on radiographs, are currently used to guide treatment strategies. Unfortunately, even though a perfect correction of the spinal curve is achieved, some trunk deformities remain, making patients dissatisfied with the treatment received. The purpose of this study is to identify possible shape patterns of trunk surface deformity associated with scoliosis. First, trunk surface is represented by a multivariate functional trunk shape descriptor based on 3-D clinical measurements computed on cross sections of the trunk. Then, the classical formulation of hierarchical clustering is adapted to the case of multivariate functional data and applied to a set of 236 trunk surface 3-D reconstructions. The highest internal validity is obtained when considering 11 clusters that explain up to 65% of the variance in our dataset. Our clustering result shows a concordance with the radiographic classification of spinal curves in 68% of the cases. As opposed to radiographic evaluation, the trunk descriptor is 3-D and its functional nature offers a compact and elegant description of not only the type, but also the severity and extent of the trunk surface deformity along the trunk length. In future work, new management strategies based on the resulting trunk shape patterns could be thought of in order to improve the esthetic outcome after treatment, and thus patients satisfaction.CIHR / IRS

    Text Analytics for Android Project

    Get PDF
    Most advanced text analytics and text mining tasks include text classification, text clustering, building ontology, concept/entity extraction, summarization, deriving patterns within the structured data, production of granular taxonomies, sentiment and emotion analysis, document summarization, entity relation modelling, interpretation of the output. Already existing text analytics and text mining cannot develop text material alternatives (perform a multivariant design), perform multiple criteria analysis, automatically select the most effective variant according to different aspects (citation index of papers (Scopus, ScienceDirect, Google Scholar) and authors (Scopus, ScienceDirect, Google Scholar), Top 25 papers, impact factor of journals, supporting phrases, document name and contents, density of keywords), calculate utility degree and market value. However, the Text Analytics for Android Project can perform the aforementioned functions. To the best of the knowledge herein, these functions have not been previously implemented; thus this is the first attempt to do so. The Text Analytics for Android Project is briefly described in this article

    Towards Non Invasive Diagnosis of Scoliosis Using Semi-supervised Learning Approach

    Get PDF
    Collection : Lecture notes in computer science ; vol. 6112In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.CIHR / IRS

    A Novel Method for the 3-D Reconstruction of Scoliotic Ribs From Frontal and Lateral Radiographs

    Get PDF
    Among the external manifestations of scoliosis, the rib hump, which is associated with the ribs' deformities and rotations, constitutes the most disturbing aspect of the scoliotic deformity for patients. A personalized 3-D model of the rib cage is important for a better evaluation of the deformity, and hence, a better treatment planning. A novel method for the 3-D reconstruction of the rib cage, based only on two standard radiographs, is proposed in this paper. For each rib, two points are extrapolated from the reconstructed spine, and three points are reconstructed by stereo radiography. The reconstruction is then refined using a surface approximation. The method was evaluated using clinical data of 13 patients with scoliosis. A comparison was conducted between the reconstructions obtained with the proposed method and those obtained by using a previous reconstruction method based on two frontal radiographs. A first comparison criterion was the distances between the reconstructed ribs and the surface topography of the trunk, considered as the reference modality. The correlation between ribs axial rotation and back surface rotation was also evaluated. The proposed method successfully reconstructed the ribs of the 6th-12th thoracic levels. The evaluation results showed that the 3-D configuration of the new rib reconstructions is more consistent with the surface topography and provides more accurate measurements of ribs axial rotation.Natural Sciences and Engineering Research Council of Canada and MENTOR, a strategic training program of the Canadian Institutes of Health Research
    corecore