750 research outputs found

    Stochastic Flux-Freezing and Magnetic Dynamo

    Full text link
    We argue that magnetic flux-conservation in turbulent plasmas at high magnetic Reynolds numbers neither holds in the conventional sense nor is entirely broken, but instead is valid in a novel statistical sense associated to the "spontaneous stochasticity" of Lagrangian particle tra jectories. The latter phenomenon is due to the explosive separation of particles undergoing turbulent Richardson diffusion, which leads to a breakdown of Laplacian determinism for classical dynamics. We discuss empirical evidence for spontaneous stochasticity, including our own new numerical results. We then use a Lagrangian path-integral approach to establish stochastic flux-freezing for resistive hydromagnetic equations and to argue, based on the properties of Richardson diffusion, that flux-conservation must remain stochastic at infinite magnetic Reynolds number. As an important application of these results we consider the kinematic, fluctuation dynamo in non-helical, incompressible turbulence at unit magnetic Prandtl number. We present results on the Lagrangian dynamo mechanisms by a stochastic particle method which demonstrate a strong similarity between the Pr = 1 and Pr = 0 dynamos. Stochasticity of field-line motion is an essential ingredient of both. We finally consider briefly some consequences for nonlinear MHD turbulence, dynamo and reconnectionComment: 29 pages, 10 figure

    Finite size effects and the order of a phase transition in fragmenting nuclear systems

    Get PDF
    We discuss the implications of finite size effects on the determination of the order of a phase transition which may occur in infinite systems. We introduce a specific model to which we apply different tests. They are aimed to characterise the smoothed transition observed in a finite system. We show that the microcanonical ensemble may be a useful framework for the determination of the nature of such transitions.Comment: LateX, 5 pages, 5 figures; Fig. 1 change

    Affine equivariant rank-weighted L-estimation of multivariate location

    Full text link
    In the multivariate one-sample location model, we propose a class of flexible robust, affine-equivariant L-estimators of location, for distributions invoking affine-invariance of Mahalanobis distances of individual observations. An involved iteration process for their computation is numerically illustrated.Comment: 16 pages, 4 figures, 6 table

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Temperatures of Exploding Nuclei

    Get PDF
    Breakup temperatures in central collisions of 197Au + 197Au at bombarding energies E/A = 50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Tight Finite-Key Analysis for Quantum Cryptography

    Get PDF
    Despite enormous progress both in theoretical and experimental quantum cryptography, the security of most current implementations of quantum key distribution is still not established rigorously. One of the main problems is that the security of the final key is highly dependent on the number, M, of signals exchanged between the legitimate parties. While, in any practical implementation, M is limited by the available resources, existing security proofs are often only valid asymptotically for unrealistically large values of M. Here, we demonstrate that this gap between theory and practice can be overcome using a recently developed proof technique based on the uncertainty relation for smooth entropies. Specifically, we consider a family of Bennett-Brassard 1984 quantum key distribution protocols and show that security against general attacks can be guaranteed already for moderate values of M.Comment: 11 pages, 2 figure

    Application of Information Theory in Nuclear Liquid Gas Phase Transition

    Full text link
    Information entropy and Zipf's law in the field of information theory have been used for studying the disassembly of nuclei in the framework of the isospin dependent lattice gas model and molecular dynamical model. We found that the information entropy in the event space is maximum at the phase transition point and the mass of the cluster show exactly inversely to its rank, i.e. Zipf's law appears. Both novel criteria are useful in searching the nuclear liquid gas phase transition experimentally and theoretically.Comment: 5 pages, 5 figure

    Mass dependence of light nucleus production in ultrarelativistic heavy ion collisions

    Full text link
    Light nuclei can be produced in the central reaction zone via coalescence in relativistic heavy ion collisions. E864 at BNL has measured the production of ten light nuclei with nuclear number of A=1 to A=7 at rapidity y1.9y\simeq1.9 and pT/A300MeV/cp_{T}/A\leq300MeV/c. Data were taken with a Au beam of momentum of 11.5 A GeV/cGeV/c on a Pb or Pt target with different experimental settings. The invariant yields show a striking exponential dependence on nuclear number with a penalty factor of about 50 per additional nucleon. Detailed analysis reveals that the production may depend on the spin factor of the nucleus and the nuclear binding energy as well.Comment: (6 pages, 3 figures), some changes on text, references and figures' lettering. To be published in PRL (13Dec1999
    corecore