250 research outputs found
Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata
The abundance and diversity of microorganisms on the surface of the tropical green macroalga Caulerpa racemosa var. turbinata and the effect of algal surface and waterborne compounds on fouling organisms were investigated both in laboratory and field experiments. As shown via electron microscopic enumeration, the abundance of epibiotic bacteria and diatoms on algal frond surfaces was not significantly different from the reference biofilms harvested from stones in the C. racemosa habitat. The analysis of Terminal Restriction Fragment Length Polymorphism of DNA from algal surface-associated bacterial communities revealed that despite a similar abundance of these bacteria, the community profile on algal frond surfaces differed significantly from that of inanimate, undefended substrates. These results suggest that the alga regulate the occurrence of certain bacterial ribotypes. This result was in accordance with the fact that different bacterial communities formed on the artificial substrata (i.e. Petri dishes) placed in the C. racemosa habitat and alga-free control sites. Neither C. racemosa conditioned seawater (CCW) nor hexane surface extracts affected the growth of bacterial isolates from biofilms. However, only CCW exhibited a toxic effect on the larvae of the fouling polychaete Hydroides elegans, and evoked abnormal larval development in a concentration-dependent fashion. At sublethal concentrations, the <1 kD fraction of CCW inhibited the larval settlement of H. elegans and the bryozoan Bugula neritina. Caulerpenyne, the prominent bioactive metabolite in the genus Caulerpa, was not detected in CCW by chromatographic procedures. Our data suggest that waterborne compounds other than caulerpenyne are involved in the chemical defense of the alga C. racemosa
Marine Biotechnology for sustainable futures
Marine Biotechnology or blue biotechnology is a sustainable usage of marine resources for the benefit of mankind. In this presentation the history of marine biotechnology and the main fields of the biotechnology will be presented. The emphasis will be given on anticancer and antifouling compounds from marine organisms. At the end of the presentation, the future research directions will be provided.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Antifouling activity and microbial diversity of two congeneric sponges Callyspongia spp. from Hong Kong and the Bahamas
Microbial communities of the sponges Callyspongia sp. from Hong Kong and Callyspongia plicifera (Porifera: Demospongia) from the Bahamas were compared with each other and with those from reference substrata using a terminal restriction fragment length polymorphism (T-RFLP) analysis. The least number of bacterial ribotypes and bacterial isolates were retrieved from Bahamas reference and sponge surfaces, while the bacterial communities from Hong Kong Callyspongia sp. and reference surfaces were more diverse. Microbial communities from the 2 sponges were different from each other and from reference substrata. Gas chromatographic–mass spectrometric (GC-MS) analysis of dichloromethane extracts revealed that more than 60% of the compounds were similar in the 2 species Callyspongia sp. and C. plicifera, compared to the compounds of Halichondria spp. At tissue level (TL) concentrations, both sponge extracts predominantly inhibited the growth of bacteria from reference substrata. Multifactor ANOVA revealed that the source of bacteria (sponge surface, interior, or reference substrata), the geographic location of isolates (Hong Kong or the Bahamas), thesponge extract (from Callyspongia sp. or from C. plicifera), and combinations of these factors contributed significant effects in disc diffusion assay experiments. Sponge extracts at both TL concentrations and 10× dilutions were toxic to larvae of the polychaete Hydroides elegans and the barnacle Balanus amphitrite. Our results suggest that the 2 congeneric sponges Callyspongia spp. from different biogeographic regions have different bacterial associates, while producing relatively similar secondary metabolites. It remains to be explored whether differences in sponge-associated bacterial communities will also hold for other congeneric sponge species from different regions
Biofouling on artificial substrata in Muscat waters
Macro-fouling communities developed on acrylic, aluminum, wood and fiberglass panels were investigated after 4 months exposure in Marina Bandar al Rawdah and Marina Shangri La. Wet weight of biofouling was about 2-fold higher in Marina Bandar Rawdah and different communities were formed on the front and back sides of the panels. Differences between communities on different materials were less pronounced. In the second study, wet weight and community composition of macro-fouling communities on ceramic tiles at the depth of 1 m and 5 m in Marina Bandar al Rawdah were investigated. During 2008 – 2010, there were no differences between biomass of communities, while in 2011 biomass of macro-fouling was higher on tiles at 5 m. In December 2008 the minimal weight (0 kg/m2) and in September 2011 the maximal weight (26.3 kg/m2) of macro-fouling communities were recorded. In total, 27 invertebrate fouling species were found, which mostly (33%) belonged to phylum Ectoprocta. Three invasive bryozoan (Bugula neritina, Zoobotryon verticillatum and Schizoporella errata) and one invasive tunicate (Ciona intestinalis) species were observed. Overall, this study indicates high biofouling pressure in Muscat marinas and suggests necessity of future studies of fouling communities in Oman waters
Living on the edge: Biofilms developing in oscillating environmental conditions
For the first time, the densities and diversity of microorganisms developed on ocean gliders were investigated using flow cytometry and Illumina MiSeq sequencing of 16S and 18S rRNA genes. Ocean gliders are autonomous buoyancy-driven underwater vehicles, equipped with sensors continuously recording physical, chemical, and biological parameters. Microbial biofilms were investigated on unprotected parts of the glider and surfaces coated with base, biocidal and chitosan paints. Biofilms on the glider were exposed to periodical oscillations of salinity, oxygen, temperature, pressure, depth and light, due to periodic ascending and descending of the vehicle. Among the unprotected surfaces, the highest microbial abundance was observed on the bottom of the glider’s body, while the lowest density was recorded on the glider’s nose. Antifouling paints had the lowest densities of microorganisms. Multidimensional analysis showed that the microbial communities formed on unprotected parts of the glider were significantly different from those on biocidal paint and in seawater
Ecosystem Restoration: Enhancing Ecosystem Services with Floating Aquaculture
Restoration ecologists recognize the need for restoring ecosystem servicesin sustainable ways that meet societal needs. In the UK, Ireland, Australia,and some US states the goal is restoring native oyster reefs. In otherstates, failures at restoration due to poor water quality and predation havefocused restoration activities on techniques that work, restoring intertidalreefs and generating living shorelines that reduce or reverse erosion. In theUnited States, restoring water quality and reducing or reversing erosion aresocietally accepted entry points for repairing estuarine ecosystems. Thisstudy is an overview of the current status of oyster reef restoration andprovide a novel approach called “oyster reef in a bag”. Combining oysterreef restoration efforts with existing floating oyster aquaculture technologygenerates novel ecosystems that are a combination of biofouling and oysterreef communities. These novel ecosystems could be a practical beginningto improve water quality, mitigate erosion and restore higher trophic levelecosystem services
Gramella portivictoriae sp nov, a novel member of the family Flavobacteriaceae isolated from marine sediment (vol 55, pg 2497, 2005)
A yellow-pigmented, Gram-negative, slowly gliding, rod-shaped, strictly aerobic bacterium
(UST040801-001T) was isolated from marine sediment. The DNA G+C content was 39?9 mol%.
The predominant fatty acids were a15 : 0, i15 : 0, i15 : 0 3-OH, i17 : 1v9c, i17 : 0 3-OH and
summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1v7c (altogether representing 76?2% of
the total). MK-6 was the only respiratory quinone. Flexirubin-type pigments were not produced.
Phylogenetic analysis based on 16S rRNA gene sequences indicated that Gramella echinicola
KMM 6050T (the only species in the genus) was the closest relative of UST040801-001T,
sharing 98?0% sequence similarity. The DNA–DNA relatedness between UST040801-001T and
Gramella echinicola KMM 6050T was 13 %. Strain UST040801-001T can be distinguished
from G. echinicola by means of 11 phenotypic traits. The results of molecular and phenotypic
analyses suggested that UST040801-001T represents a novel species of Gramella. The name
Gramella portivictoriae sp. nov. is proposed for this bacterium, with UST040801-001T
(=NRRL 41137T=JCM 13192T) as the type strain
Gillisia myxillae sp. nov., a novel member of the family Flavobacteriaceae, isolated from the marine sponge Myxilla incrustans : Errata (vol 56, pg 1795, 2006)
Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the Bahamas, and emended description of Nonlabens tegetincola
A bacterial strain, UST030701-156T, was isolated from a marine sponge in the Bahamas. Strain UST030701-156T was orange-pigmented, Gram-negative, rod-shaped with tapered ends, slowly motile by gliding and strictly aerobic. The predominant fatty acids were a15 : 0, i15 : 0, i15 : 0 3-OH, i17 : 0 3-OH, i17 : 1ω9c and summed feature 3, comprising i15 : 0 2-OH and/or 16 : 1ω7c. MK-6 was the only respiratory quinone. Flexirubin-type pigments were not produced. Phylogenetic analysis based on 16S rRNA gene sequences placed UST030701-156T within a distinct lineage in the family Flavobacteriaceae, with 93·3 % sequence similarity to the nearest neighbour, Nonlabens tegetincola. The DNA G+C content of UST030701-156T was 41·0 mol% and was much higher than that of N. tegetincola (33·6 mol%). Strain UST030701-156T can be distinguished from other members of the Flavobacteriaceae by means of a number of chemotaxonomic and phenotypic characteristics. It is proposed, therefore, that UST030701-156T represents a novel taxon designated Stenothermobacter spongiae gen. nov., sp. nov. The type strain is UST030701-156T (=NRRL B-41138T=JCM 13191T). Carbon-source utilization by N. tegetincola was re-examined and an emended description is therefore included
- …
