2,420 research outputs found

    Interfaces and the edge percolation map of random directed networks

    Full text link
    The traditional node percolation map of directed networks is reanalyzed in terms of edges. In the percolated phase, edges can mainly organize into five distinct giant connected components, interfaces bridging the communication of nodes in the strongly connected component and those in the in- and out-components. Formal equations for the relative sizes in number of edges of these giant structures are derived for arbitrary joint degree distributions in the presence of local and two-point correlations. The uncorrelated null model is fully solved analytically and compared against simulations, finding an excellent agreement between the theoretical predictions and the edge percolation map of synthetically generated networks with exponential or scale-free in-degree distribution and exponential out-degree distribution. Interfaces, and their internal organization giving place from "hairy ball" percolation landscapes to bottleneck straits, could bring new light to the discussion of how structure is interwoven with functionality, in particular in flow networks.Comment: 20 pages, 4 figure

    Structural efficiency of percolation landscapes in flow networks

    Get PDF
    Complex networks characterized by global transport processes rely on the presence of directed paths from input to output nodes and edges, which organize in characteristic linked components. The analysis of such network-spanning structures in the framework of percolation theory, and in particular the key role of edge interfaces bridging the communication between core and periphery, allow us to shed light on the structural properties of real and theoretical flow networks, and to define criteria and quantities to characterize their efficiency at the interplay between structure and functionality. In particular, it is possible to assess that an optimal flow network should look like a "hairy ball", so to minimize bottleneck effects and the sensitivity to failures. Moreover, the thorough analysis of two real networks, the Internet customer-provider set of relationships at the autonomous system level and the nervous system of the worm Caenorhabditis elegans --that have been shaped by very different dynamics and in very different time-scales--, reveals that whereas biological evolution has selected a structure close to the optimal layout, market competition does not necessarily tend toward the most customer efficient architecture.Comment: 8 pages, 5 figure

    Comfort Evaluation of the 'Católica' Pedestrian Bridge Based on SETRA 2006

    Get PDF
    The increasing trend toward slender and low-stiffness pedestrian bridge designs has significantly raised their susceptibility to dynamic excitations induced by pedestrian activity. One of the most critical vibration phenomena in such structures is synchronous excitation, which occurs when the walking frequency of pedestrians coincides with the natural frequency of the bridge. This resonance condition can amplify the structural response, negatively impacting both user comfort and overall structural performance. These challenges are particularly relevant in densely populated urban environments such as Lima. In this study, the dynamic behavior and comfort performance of the “Católica” pedestrian bridge were evaluated through in-situ vibration measurements using a geophone-based seismograph. The recorded data were analyzed based on the SETRA guideline, which classifies comfort into four levels according to peak vertical acceleration. This international reference was selected because, unlike the Peruvian bridge design standards—which do not explicitly consider pedestrian-induced vibrations as a dynamic load—the SETRA guideline has been applied in similar studies within the national context and offers more specific criteria for evaluating pedestrian comfort. The results showed that vertical accelerations reached up to 0.541 g (5.31 m/s2) during pedestrian activity, corresponding to the lowest comfort level defined by the SETRA guideline. While most structural frequencies remained outside the resonance range, certain transverse modes during loading approached 1.2 Hz—a value close to the typical walking frequency range of pedestrians (1.7-2.3 Hz)suggesting a moderate potential for dynamic amplification. Although no clear resonance was detected, the elevated acceleration levels observed under normal use conditions highlight the need to implement vibration mitigation measures. At this stage of the study, no single solution is prescribed. However, there is a recognized need to evaluate and compare various mitigation strategies in order to determine the most appropriate approach. These may include Tuned Mass Dampers (TMDs), damping pads, tuned stiffness elements, or minor structural modifications. A comparative assessment considering technical performance, ease of implementation, and cost-effectiveness would help identify the optimal solution. Such measures would allow the bridge to comply with the SETRA Level 1 comfort threshold (0.5 m/s2), thereby enhancing both safety and user comfort

    Measurement of the mass and lifetime of the Ωb\Omega_b^- baryon

    Get PDF
    A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb1^{-1} collected by LHCb at s=7\sqrt{s}=7 and 8 TeV, is used to reconstruct 63±963\pm9 ΩbΩc0π\Omega_b^-\to\Omega_c^0\pi^-, Ωc0pKKπ+\Omega_c^0\to pK^-K^-\pi^+ decays. Using the ΞbΞc0π\Xi_b^-\to\Xi_c^0\pi^-, Ξc0pKKπ+\Xi_c^0\to pK^-K^-\pi^+ decay mode for calibration, the lifetime ratio and absolute lifetime of the Ωb\Omega_b^- baryon are measured to be \begin{align*} \frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\ \tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the uncertainties are statistical, systematic and from the calibration mode (for τΩb\tau_{\Omega_b^-} only). A measurement is also made of the mass difference, mΩbmΞbm_{\Omega_b^-}-m_{\Xi_b^-}, and the corresponding Ωb\Omega_b^- mass, which yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2. \end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm

    Model-independent evidence for J/ψpJ/\psi p contributions to Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays

    Get PDF
    The data sample of Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays acquired with the LHCb detector from 7 and 8~TeV pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}, is inspected for the presence of J/ψpJ/\psi p or J/ψKJ/\psi K^- contributions with minimal assumptions about KpK^- p contributions. It is demonstrated at more than 9 standard deviations that Λb0J/ψpK\Lambda_b^0\to J/\psi p K^- decays cannot be described with KpK^- p contributions alone, and that J/ψpJ/\psi p contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for Pc+J/ψpP_c^+\to J/\psi p charmonium-pentaquark states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the end

    Differential branching fraction and angular analysis of Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- decays

    Get PDF
    The differential branching fraction of the rare decay Λb0Λμ+μ\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^- is measured as a function of q2q^{2}, the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 \mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is observed in the q2q^2 region below the square of the J/ψJ/\psi mass. Integrating over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+ 0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λb0J/ψΛ\Lambda^{0}_{b} \rightarrow J/\psi \Lambda, respectively. In the q2q^2 intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (AFBlA^{l}_{\rm FB}) and hadron (AFBhA^{h}_{\rm FB}) systems are measured for the first time. In the range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} = -0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} = -0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde

    Measurements of the branching fractions of B+→ppK+ decays

    Get PDF
    The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained

    Study of charmonium production in b -hadron decays and first evidence for the decay Bs0

    Get PDF
    Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32

    Study of BDKπ+πB^{-}\to DK^-\pi^+\pi^- and BDππ+πB^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle γ\gamma

    Get PDF
    We report a study of the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the Kπ±K^{\mp}\pi^{\pm} and CP-even K+KK^+K^- and π+π\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed BDKπ+πB^-\to DK^-\pi^+\pi^- and favored BDππ+πB^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed DK+πD\to K^+\pi^- final state of the BDππ+πB^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay BDKπ+πB^{-}\to DK^-\pi^+\pi^-, with DK+πD\to K^+\pi^-, is also presented. From the observed yields in the BDKπ+πB^-\to DK^-\pi^+\pi^-, BDππ+πB^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be γ=(7419+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of γ\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
    corecore