382 research outputs found
RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies
Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey
Strong gravitational lensing by galaxy clusters magnifies background
galaxies, enhancing our ability to discover statistically significant samples
of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity
functions. Here, we present the first five lens models out of the Reionization
Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST
WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell
2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing
magnification is essential for estimating the intrinsic properties of
high-redshift galaxy candidates, and properly accounting for the survey volume.
We report on new spectroscopic redshifts of multiply imaged lensed galaxies
behind these clusters, which are used as constraints, and detail our strategy
to reduce systematic uncertainties due to lack of spectroscopic information. In
addition, we quantify the uncertainty on the lensing magnification due to
statistical and systematic errors related to the lens modeling process, and
find that in all but one cluster, the magnification is constrained to better
than 20% in at least 80% of the field of view, including statistical and
systematic uncertainties. The five clusters presented in this paper span the
range of masses and redshifts of the clusters in the RELICS program. We find
that they exhibit similar strong lensing efficiencies to the clusters targeted
by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the
lens models are made available to the community through the Mikulski Archive
for Space TelescopesComment: Accepted to Ap
RELICS: High-Resolution Constraints on the Inner Mass Distribution of the z=0.83 Merging Cluster RXJ0152.7-1357 from strong lensing
Strong gravitational lensing (SL) is a powerful means to map the distribution
of dark matter. In this work, we perform a SL analysis of the prominent X-ray
cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in \textit{Hubble
Space Telescope} images, taken in the framework of the Reionization Lensing
Cluster Survey (RELICS). On top of a previously known galaxy multiply
imaged by RXJ0152.7-1357, for which we identify an additional multiple image,
guided by a light-traces-mass approach we identify seven new sets of multiply
imaged background sources lensed by this cluster, spanning the redshift range
[1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4
, allowing us to put relatively high-resolution constraints on the
inner matter distribution. Although modestly massive, the high degree of
substructure together with its very elongated shape make RXJ0152.7-1357 a very
efficient lens for its size. This cluster also comprises the third-largest
sample of z~6-7 candidates in the RELICS survey. Finally, we present a
comparison of our resulting mass distribution and magnification estimates with
those from a Lenstool model. These models are made publicly available through
the MAST archive.Comment: 15 Pages, 7 Figures, 4 Tables Accepted for publication in Ap
Spectrum and Morphology of the Two Brightest Milagro Sources in the Cygnus Region: MGRO J2019+37 and MGRO J2031+41
The Cygnus region is a very bright and complex portion of the TeV sky, host
to unidentified sources and a diffuse excess with respect to conventional
cosmic-ray propagation models. Two of the brightest TeV sources, MGRO J2019+37
and MGRO J2031+41, are analyzed using Milagro data with a new technique, and
their emission is tested under two different spectral assumptions: a power law
and a power law with an exponential cutoff. The new analysis technique is based
on an energy estimator that uses the fraction of photomultiplier tubes in the
observatory that detect the extensive air shower. The photon spectrum is
measured in the range 1 to 200 TeV using the last 3 years of Milagro data
(2005-2008), with the detector in its final configuration. MGRO J2019+37 is
detected with a significance of 12.3 standard deviations (), and is
better fit by a power law with an exponential cutoff than by a simple power
law, with a probability % (F-test). The best-fitting parameters for the
power law with exponential cutoff model are a normalization at 10 TeV of
, a spectral
index of and a cutoff energy of TeV. MGRO
J2031+41 is detected with a significance of 7.3, with no evidence of a
cutoff. The best-fitting parameters for a power law are a normalization of
and a
spectral index of . The overall flux is subject to an
30% systematic uncertainty. The systematic uncertainty on the power law
indices is 0.1. A comparison with previous results from TeV J2032+4130,
MGRO J2031+41 and MGRO J2019+37 is also presented.Comment: 11 pages, 10 figure
Diagnostic performance of texture analysis on MRI in grading cerebral gliomas
Background and purpose: Grading of cerebral gliomas is important both in treatment decision and assessment of prognosis. The purpose of this study was to determine the diagnostic accuracy of grading cerebral gliomas by assessing the tumor heterogeneity using MRI texture analysis (MRTA). / Material and methods: 95 patients with gliomas were included, 27 low grade gliomas (LGG) all grade II and 68 high grade gliomas (HGG) (grade III = 34 and grade IV = 34). Preoperative MRI examinations were performed using a 3T scanner and MRTA was done on preoperative contrast-enhanced three-dimensional isotropic spoiled gradient echo images in a representative ROI. The MRTA was assessed using a commercially available research software program (TexRAD) that applies a filtration-histogram technique for characterizing tumor heterogeneity. Filtration step selectively filters and extracts texture features at different anatomical scales varying from 2 mm (fine features) to 6 mm (coarse features), the statistical parameter standard deviation (SD) was obtained. Receiver operating characteristics (ROC) was performed to assess sensitivity and specificity for differentiating between the different grades and calculating a threshold value to quantify the heterogeneity. / Results: LGG and HGG was best discriminated using SD at fine texture scale, with a sensitivity and specificity of 93% and 81% (AUC 0.910, p < 0.0001). The diagnostic ability for MRTA to differentiate between the different sub-groups (grade II–IV) was slightly lower but still significant. / Conclusions: Measuring heterogeneity in gliomas to discriminate HGG from LGG and between different histological sub-types on already obtained images using MRTA can be a useful tool to augment the diagnostic accuracy in grading cerebral gliomas and potentially hasten treatment decision
Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis
BACKGROUND: Texture analysis has been done on several radiological modalities to stage, differentiate, and predict prognosis in many oncologic tumors. PURPOSE: To determine the diagnostic accuracy of discriminating glioblastoma (GBM) from single brain metastasis (MET) by assessing the heterogeneity of both the solid tumor and the peritumoral edema with magnetic resonance imaging (MRI) texture analysis (MRTA). MATERIAL AND METHODS: Preoperative MRI examinations done on a 3-T scanner of 43 patients were included: 22 GBM and 21 MET. MRTA was performed on diffusion tensor imaging (DTI) in a representative region of interest (ROI). The MRTA was assessed using a commercially available research software program (TexRAD) which applies a filtration histogram technique for characterizing tumor and peritumoral heterogeneity. The filtration step selectively filters and extracts texture features at different anatomical scales varying from 2 mm (fine) to 6 mm (coarse). Heterogeneity quantification was obtained by the statistical parameter entropy. A threshold value to differentiate GBM from MET with sensitivity and specificity was calculated by receiver operating characteristic (ROC) analysis. RESULTS: Quantifying the heterogeneity of the solid part of the tumor showed no significant difference between GBM and MET. However, the heterogeneity of the GBMs peritumoral edema was significantly higher than the edema surrounding MET, differentiating them with a sensitivity of 80% and specificity of 90%. CONCLUSION: Assessing the peritumoral heterogeneity can increase the radiological diagnostic accuracy when discriminating GBM and MET. This will facilitate the medical staging and optimize the planning for surgical resection of the tumor and postoperative management
Supraglottic Kaposi’s Sarcoma in HIV-Negative Patients: Case Report and Literature Review
This paper presents a case report of an HIV-negative, supraglottic Kaposi’s sarcoma patient. The 80-year-old male patient was admitted with complaints of hoarseness, difficulty in swallowing, and a stinging sensation in his throat for approximately six months. The endoscopic larynx examination revealed a lesion which had completely infiltrated the epiglottis, reached right aryepiglottic fold, was vegetating, pink and purple in color, multilobular, fragile, and shaped like a bunch of grapes, and partially blocked the bleeding airway passage. The case was discussed by the hospital’s head-neck cancer committee and a surgery decision was made. A tracheotomy was performed under local anesthesia before the operation due to respiratory distress and endotracheal intubation difficulty. Direct laryngoscopy showed that the mass was limited in the supraglottic area, had invaded the entire left aryepiglottic fold and one-third of the front right aryepiglottic fold, and completely covered epiglottis. It should be remembered that although rare, Kaposi’s sarcoma may be encountered in larynx malignancy cases. Disease-free survival may be achieved through local excision and postoperative radiotherapy
RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9-40.7
Strong gravitational lensing by galaxy clusters has become a powerful tool for probing the high-redshift universe, magnifying distant and faint background galaxies. Reliable strong-lensing (SL) models are crucial for determining the intrinsic properties of distant, magnified sources and for constructing their luminosity function. We present here the first SL analysis of MACS J0308.9+2645 and PLCK G171.9-40.7, two massive galaxy clusters imaged with the Hubble Space Telescope, in the framework of the Reionization Lensing Cluster Survey (RELICS). We use the light-traces-mass modeling technique to uncover sets of multiply imaged galaxies and constrain the mass distribution of the clusters. Our SL analysis reveals that both clusters have particularly large Einstein radii (θ E > 30′′ for a source redshift of z s = 2), providing fairly large areas with high magnifications, useful for high-redshift galaxy searches (∼2 arcmin2 with μ > 5 to ∼1 arcmin2 with μ > 10, similar to a typical Hubble Frontier Fields cluster). We also find that MACS J0308.9+2645 hosts a promising, apparently bright (J ∼ 23.2-24.6 AB), multiply imaged high-redshift candidate at z ∼ 6.4. These images are among the brightest high-redshift candidates found in RELICS. Our mass models, including magnification maps, are made publicly available for the community through the Mikulski Archive for Space Telescopes
A web-based library consult service for evidence-based medicine: Technical development
BACKGROUND: Incorporating evidence based medicine (EBM) into clinical practice requires clinicians to learn to efficiently gain access to clinical evidence and effectively appraise its validity. Even using current electronic systems, selecting literature-based data to solve a single patient-related problem can require more time than practicing physicians or residents can spare. Clinical librarians, as informationists, are uniquely suited to assist physicians in this endeavor. RESULTS: To improve support for evidence-based practice, we have developed a web-based EBM library consult service application (LCS). Librarians use the LCS system to provide full text evidence-based literature with critical appraisal in response to a clinical question asked by a remote physician. LCS uses an entirely Free/Open Source Software platform and will be released under a Free Software license. In the first year of the LCS project, the software was successfully developed and a reference implementation put into active use. Two years of evaluation of the clinical, educational, and attitudinal impact on physician-users and librarian staff are underway, and expected to lead to refinement and wide dissemination of the system. CONCLUSION: A web-based EBM library consult model may provide a useful way for informationists to assist clinicians, and is feasible to implement
- …
