109 research outputs found
Boll Weevil (Coleoptera: Curculionidae) Feeding and Reproduction as Functions of Cotton Square Availability
The influence of food item availability on boll weevil, Anthonomus grandis grandis Boheman, feeding and reproduction was determined by providing different numbers of cotton squares (flower buds) to individual weevils. Squares were replaced daily after a 5-d feeding and mating conditioning period. The number of lifetime punctures produced by boll weevil females and males increased with square availability. The total number of punctures caused by boll weevil females was 2.7-fold higher than that caused by males. Fecundity was significantly higher in the 10:1, 15:1, and 20:1 (squares:female) treatments than in the 1:1 treatment. The relationship between eggs laid per day and the square to female ratio significantly changed over the life of the female, with the largest differences among treatments occurring in the first 3 wk of adulthood. Survival of weevil progeny to adulthood was about two-fold higher in the 10:1, 15:1, and 20:1 treatments than in the 1:1 and 5:1 treatments. When each boll weevil female was provided 10, 15, or 20 cotton squares per day, estimates of a population growth index (percent of immatures surviving to adulthood divided by immature development time) and the exponential rate of increase (rm) were significantly higher than for those provided only one or five squares per day. Boll weevil populations maintained at a square:weevil ratio of 10:1 or above will increase \u3e60-fold each generation (Ro), a rate significantly higher than that exhibited under 5:1 or 1:1 square:female regimens. These data show that daily provision of 10 squares per female provides sufficient resources to elicit a maximal oviposition response in the laboratory. Our results also will be useful in predicting changes in boll weevil populations relative to crop phenology and starting population density
Influence of Different Cotton Fruit Sizes on Boll Weevil (Coleoptera: Curculionidae) Oviposition and Survival to Adulthood
Understanding the critical host plant factors that determine oviposition behavior and survival of boll weevil, Anthonomus grandis grandis Boheman, on cotton, Gossypium hirsutum L., is important for developing successful pest management strategies. However, published information is both conflicting and limited regarding how different cotton fruit sizes affect boll weevil oviposition choices and subsequent larval survival to adulthood. Consequently, we used a standard based on fruit size diameter to evaluate boll weevil feeding and oviposition punctures, and survival to adulthood on 10 different cotton fruit sizes: squares of diameter 1.5–2.0 (pinhead), 3.0–3.5 (matchhead), 5–6, 7–8, or 9–10 mm; candle; and bolls of diameter 10–15, 15–20, 20–30, or \u3e30 mm. Oviposition and feeding punctures were significantly affected by cotton fruit size. Females did not oviposit in pinhead squares. The fewest eggs were oviposited in boll sizes \u3e30 mm. The highest number of eggs was recorded in square sizes of 5–6 and 7–8 mm. Boll weevil survival to adulthood was highest on square sizes of 7–8 or 9–10 mm (58.6–59.7%). No survival occurred in matchhead squares or bolls \u3e30 mm. Duration of development was longest on boll sizes of 15–20 and 20–30 mm (18.2–18.8 d). The growth index (percentage immature survival divided by immature developmental time) of female boll weevils was 2.8-fold higher in 7–8- or 9–10-mm diameter squares than in 20–30-mm diameter bolls. This study will improve our capacity to develop methods to predict fruit losses and changes in boll weevil populations in the field, given a starting density of fruit suitable for oviposition, and a corresponding initial population density of weevils
Effects of photoperiod on boll weevil (Coleoptera: Curculionidae) development, survival, and reproduction
Effects of photoperiod on development, survival, feeding, and oviposition of boll weevils,Anthonomus grandis grandis Boheman, were assessed under five different photophases (24, 14, 12, 10, and 0 h) at a constant 27°C temperature and 65% RH in the laboratory. Analyses of our results detected positive relationships between photoperiod and puncturing (mean numbers of oviposition and feeding punctures per day), and oviposition (oviposition punctures/oviposition+feeding punctures) activities, and the proportion of squares attacked by boll weevil females. When boll weevil females developed in light:darkness cycles, they produced a significantly higher percentage of eggs developing to adulthood than those developed in 24-h light or dark conditions. In long photoperiod (24:0 and 14:10 h), the number of female progeny was significantly higher and their development time was significantly shorter than those developed in short photoperiod (0:24 and 10:14 h). Lifetime oviposition was significantly highest at 12- and 14-h photophase, lowest at 0- and 10-h photophase, and intermediate at 24 h of light. Life table calculations indicated that boll weevil populations developed in a photoperiod of 14:10 and 12:12 (L:D) h will increase an average of two-fold each generation (Ro) compared with boll weevils developed in 24:0- and 10:14-h photoperiods and 15-fold compared with those at 0:24 h. Knowledge of the photoperiod-dependent population growth potential is critical for understanding population dynamics to better develop sampling protocols and timing insecticide applications
Temperature-dependent development and reproduction of the boll weevil (Coleoptera: Curculionidae)
Effects of temperature on development, survival, and fecundity of boll weevil, Anthonomus grandis grandis Boheman, were assessed at 10, 11, 12, 15,20,25,30,35,45, and 46 °C; 65% relative humidity; and a photoperiod of 13:11 (L: D) h. The mortality of boll weevil immature stages was 100% at 12°C and decreased to 36.4% as the temperature increased to 25°C. When the temperature increased from 30 °C to 45 °C, the mortality of weevils also increased from 50.1% to 100%. From 15°C to 35°C, the bollweevilpreimaginal development rate was linearly related to temperature. The average development time of total boll weevil immature lifestages decreased 3.6-fold and the preovipositional period decreased 3.3-fold when the temperature was increased from 15°C to 30°C. The lower threshold for development was estimated at 10.9, 6.6, 7.0, and 9.0 °C for eggs, larval, pupal, and total immature stages, respectively, with total thermal time requirement to complete immature stages of 281.8 DD (degree day) (15°C) and 247.8 DD (35 °C). At 1LC and 46°C, weevil females did not oviposit. Longevity of adult females decreased 4.6-fold with increasing temperatures from 15°C to 35°C. Fecundity increased with increasing temperatures up to 30°C and significantly decreased thereafter. These findings will be useful in creating a temperature-based degree-day model for predicting the occurrence of key life stages in the field. An accurate predictor of a pest\u27s development can be very important in determining sampling protocols, timing insecticide applications, or implementing an integrated pest management control strategy targeting susceptible life stages
Reproductive Potential of Overwintering, F1, and F2 Female Boll Weevils (Coleoptera: Curculionidae) in the Lower Rio Grande Valley of Texas
The feeding and oviposition activity of overwintering boll weevils, Anthonomus grandis grandis (Boheman), and seasonal fluctuations in development, survival, and reproduction of progeny of overwintering and first- and second-generation boll weevil females were determined in the laboratory at 27°C, 65% RH, and a photoperiod of 12:12 (L:D) h. During the cotton-free period in the Lower Rio Grande Valley, female boll weevils without access to cotton resorb their unlaid eggs and enter reproductive diapause. However, when they were provided daily with greenhouse-grown cotton squares, commencement of oviposition began after 7, 15, or 20 d, depending on when they were captured. Females captured later in the winter fed longer before laying eggs than those captured in the early fall, suggesting that it may take females longer to terminate diapause the longer they have been dormant. The rate of feeding by females was significantly less during the winter months, and this may have affected the rate of diet-mediated termination of dormancy. Females of the first and second generations after the overwintering generation produced a significantly higher percentage of progeny surviving to adulthood and a higher proportion of these progeny were females. Offspring development time from overwintering female parents was significantly longer than that from first and second generations under the same laboratory conditions. The total number of lifetime eggs produced by females of the second generation during the cotton-growing season were ≈9.9-fold higher than for overwintering females and 1.5-fold higher than for first-generation females. Life table calculations indicated that the population of second-generation boll weevils increased an average of 1.5-fold higher each generation than for females of the first generation and 22.6-fold higher than for overwintering females. Our data showed variation in boll weevil survival, development, and reproductive potential among the overwintering and first- and second-generation females, suggesting inherent seasonal fluctuations in these parameters
Circadian rhythms of feeding, oviposition, and emergence of the boll weevil (Coleoptera: Curculionidae)
Circadian rhythm of feeding, oviposition, and emergence of boll weevil adults were determined at five different photophases (24, 14, 12, 10, and 0 hours) and a constant 27°C temperature, 65% RH in the laboratory. Squares from Petri dishes, where they were exposed to boll weevil females, were removed and examined for feeding and oviposition punctures every 4 hours during daylight (0700–1900 h) and every 12 h at night (1900–0700 h) over eight consecutive days. Cohorts of randomly selected egg-punctured squares were sampled from ovipositing females at 0700, 1100, 1500, and 1900 during 24 hours and under different photophase treatments, and maintained in Petri dishes at 27 ± 1°C, 65% RH. Dishes were observed twice daily (1900 and 0700 h) for adults emerging at day or night. Circadian rhythm of oviposition was not affected by the length of the photophase. The boll weevil has round-the-clock circadian rhythm of oviposition, with a daytime preference. We observed that 82.4%-86.0% of the boll weevil eggs were deposited between 0700 and 1900 h, and 14.0%-17.6% between 1900 and 0700 h during a 24-h period. Feeding of boll weevil females in photoperiods 24: 0 h (complete light) and 0: 24 h (complete darkness) did not significantly change between 0700–1900 h versus 1900–0700 h, while the daily cycle of light and darkness in other photoperiods significantly increased the feeding punctures from 0700–1900 compared with 1900–0700 h. The circadian rhythm of emergence depended significantly on the time of oviposition and the length of the photophase. Investigation of boll weevil circadian rhythm provides a better understanding of boll weevil ecology and reveals potential weak links for improving control technologies targeting their reproductive strategies
Visual Responses of Adult Asian Citrus Psyllid (Hemiptera: Liviidae) to Colored Sticky Traps on Citrus Trees
The effects of five differently-colored sticky traps in capturing adult Diaphorina citri were evaluated in citrus orchards. Trap catches of D. citri were monitored fortnightly on blue, green, red, white and yellow sticky cards placed on three citrus varieties during D. citri active flight period from April to July in south Texas. Evaluation of mean trap catches of each color by repeated measures analysis of variance produced three separate groups: yellow traps caught significantly more D. citri adults than the other four traps; red and green traps caught significantly more D. citri than blue and white traps, which were not significantly different. Although the number of adult psyllid captured on all trap types significantly increased with time during the trapping period, the performance of traps did not change with time. Trap catches were also significantly influenced by the citrus species; traps placed on lemon trees captured more D. citri than those placed on sweet orange and grapefruit, suggesting that plant preference exhibited by D. citri may influence the performance of traps. The ratio of trap reflectance between the 680 to 700 nm and the 450 nm was significantly correlated with total trap catches in all host species studied. Thus, this index was a good indicator of the attractiveness of adult D. citri to colored traps. Additionally, we compared the reflectance values of young versus mature flush shoots of the three host plants used in this study as related to densities of D. citri recorded in colored traps. We discussed the importance of visual cues in the host finding behavior of adult D. citri
The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies
Many agricultural pests can be harboured by alternative host plants but these can also harbour the pests’ natural enemies. We evaluated the capacity of non-cotton plant species (both naturally growing and cultivated) to function as alternative hosts for the cotton leaf hopper Amrasca devastans (Homoptera: Ciccadellidae) and its natural enemies. Forty-eight species harboured A. devastans. Twenty-four species were true breeding hosts, bearing both nymphal and adult A. devastans, the rest were incidental hosts. The crop Ricinus communis and the vegetables Abelmoschus esculentus and Solanum melongena had the highest potential for harbouring A. devastans and carrying it over into the seedling cotton crop. Natural enemies found on true alternative host plants were spiders, predatory insects (Chrysoperla carnea, Coccinellids, Orius spp. and Geocoris spp.) and two species of egg parasitoids (Arescon enocki and Anagrus sp.). Predators were found on 23 species of alternative host plants, especially R. communis. Parasitoids emerged from one crop species (R. communis) and three vegetable species; with 39 % of A. devastans parasitised. We conclude that the presence of alternative host plants provides both advantages and disadvantages to the cotton agro-ecosystem because they are a source of both natural enemy and pest species. To reduce damage by A. devastans, we recommend that weeds that harbour the pest should be removed, that cotton cultivation with R. communis, A. esculentus, and S. melongena should be avoided, that pesticides should be applied sparingly to cultivate alternative host plants and that cotton crops should be sown earlier
Ecological compatibility of GM crops and biological control
Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems (especially field-cropping systems), and present challenges and opportunities for developing biologically based pest-management programs. Interactions between biological control agents (insect predators, parasitoids, and pathogens) and GM crops exceed simple toxicological relationships, a priority for assessing risk of GM crops to non-target species. To determine the compatibility of biological control and insect-resistant and herbicide-tolerant GM crop traits within integrated pest-management programs, this synthesis prioritizes understanding the bi-trophic and prey/host-mediated ecological pathways through which natural enemies interact within cropland communities, and how GM crops alter the agroecosystems in which natural enemies live. Insect-resistant crops can affect the quantity and quality of non-prey foods for natural enemies, as well as the availability and quality of both target and non-target pests that serve as prey/hosts. When they are used to locally eradicate weeds, herbicide-tolerant crops alter the agricultural landscape by reducing or changing the remaining vegetational diversity. This vegetational diversity is fundamental to biological control when it serves as a source of habitat and nutritional resources. Some inherent qualities of both biological control and GM crops provide opportunities to improve upon sustainable IPM systems. For example, biological control agents may delay the evolution of pest resistance to GM crops, and suppress outbreaks of secondary pests not targeted by GM plants, while herbicide-tolerant crops facilitate within-field management of vegetational diversity that can enhance the efficacy of biological control agents. By examining the ecological compatibility of biological control and GM crops, and employing them within an IPM framework, the sustainability and profitability of farming may be improved
Detection of Incipient Pest Infestations on Glasshouse Crops Using Multispectral Imagery and a Common Vegetation Index
Research was conducted to evaluate the effectiveness of multispectral (conventional color and color infrared) imagery and a common vegetation index (simple ratio) for detecting incipient infestations of spider mites (Tetranychus spp.; Acari: Tetranychidae) and false spider mites (Brevipalpus spp.; Acari: Tenupalpidae) on selected crops under glasshouse conditions. Although damaging infestations of both mite species were associated with intense feeding injury which was readily detectable by visual inspection, subtle levels of foliar damage caused by the two mite species were difficult to detect by visual inspection and were not readily distinguishable from undamaged (healthy) foliage in conventional color (CC) or color infrared (CIR) imagery. In contrast, foliage exhibiting subtle levels of mite feeding injury was readily distinguished from healthy foliage in derivative imagery based on the Simple Ratio (SR), a vegetation index defined as the ratio of near-infrared to red reflectance (700-1100 nm and 600-700 nm, respectively) for each pixel in the imagery. CIR and SR images were shown to be considerably more effective than CC imagery in the initial detection and subsequent monitoring of a spider mite infestation on glasshouse cucumbers which increased from incipient to annihilative levels within a period of approximately six weeks. The rationale for and potential uses of CC, CIR, and derivative imagery based on SR and other vegetative indices for monitoring pest infestations on glasshouse crops are discussed
- …
