3,537 research outputs found
Propulsion systems dispersion analysis and optimum propellant management
Propulsion systems dispersion analysis and propellant optimization method for Apollo subsystem
Apollo cryogenic integrated systems program
The integrated systems program is capable of simulating both nominal and anomalous operation of the Apollo cryogenics storage system (CSS). Two versions of the program exist; one for the Apollo 14 configuration and the other for J Type Mission configurations. The program consists of two mathematical models which are dynamically coupled. A model of the CSS components and lines determines the oxygen and hydrogen flowrate from each storage tank given the tank pressures and temperatures, and the electrical power subsystem and environmental control subsystem flow demands. Temperatures and pressures throughout the components and lines are also determined. A model of the CSS tankage determines the pressure and temperatures in the tanks given the flowrate from each tank and the thermal environment. The model accounts for tank stretch and includes simplified oxygen tank heater and stratification routines. The program is currently operational on the Univac 1108 computer
An Experimental Overview of Results Presented at SQM 2006
I have been asked to give an critical overview on the experimental results
shown in the conference with a emphasis of what has been learned and the
challenges that are ahead in trying to understand the physics of the strongly
interacting quark-gluon plasma. I will not try to summarize all of the results
presented, rather I will concentrate primarily on RHIC data from this
conference. Throughout this summary, I will periodically review some of the
previous results for those not familiar with the present state of the field.Comment: 15 pages, 12 Figure
Nonlinear Velocity-Density Coupling: Analysis by Second-Order Perturbation Theory
Cosmological linear perturbation theory predicts that the peculiar velocity
and the matter overdensity at a same point are
statistically independent quantities, as log as the initial density
fluctuations are random Gaussian distributed. However nonlinear gravitational
effects might change the situation. Using framework of second-order
perturbation theory and the Edgeworth expansion method, we study local density
dependence of bulk velocity dispersion that is coarse-grained at a weakly
nonlinear scale. For a typical CDM model, the first nonlinear correction of
this constrained bulk velocity dispersion amounts to (Gaussian
smoothing) at a weakly nonlinear scale with a very weak dependence on
cosmological parameters. We also compare our analytical prediction with
published numerical results given at nonlinear regimes.Comment: 16 pages including 2 figures, ApJ 537 in press (July 1
Intermediate states at structural phase transition: Model with a one-component order parameter coupled to strains
We study a Ginzburg-Landau model of structural phase transition in two
dimensions, in which a single order parameter is coupled to the tetragonal and
dilational strains. Such elastic coupling terms in the free energy much affect
the phase transition behavior particularly near the tricriticality. A
characteristic feature is appearance of intermediate states, where the ordered
and disordered regions coexist on mesoscopic scales in nearly steady states in
a temperature window. The window width increases with increasing the strength
of the dilational coupling. It arises from freezing of phase ordering in
inhomogeneous strains. No impurity mechanism is involved. We present a simple
theory of the intermediate states to produce phase diagrams consistent with
simulation results.Comment: 16 pages, 14 figure
Restructuring of colloidal aggregates in shear flow: Coupling interparticle contact models with Stokesian dynamics
A method to couple interparticle contact models with Stokesian dynamics (SD)
is introduced to simulate colloidal aggregates under flow conditions. The
contact model mimics both the elastic and plastic behavior of the cohesive
connections between particles within clusters. Owing to this, clusters can
maintain their structures under low stress while restructuring or even breakage
may occur under sufficiently high stress conditions. SD is an efficient method
to deal with the long-ranged and many-body nature of hydrodynamic interactions
for low Reynolds number flows. By using such a coupled model, the restructuring
of colloidal aggregates under stepwise increasing shear flows was studied.
Irreversible compaction occurs due to the increase of hydrodynamic stress on
clusters. Results show that the greater part of the fractal clusters are
compacted to rod-shaped packed structures, while the others show isotropic
compaction.Comment: A simulation movie be found at
http://www-levich.engr.ccny.cuny.edu/~seto/sites/colloidal_aggregates_shearflow.htm
Twin wall of cubic-tetragonal ferroelastics
We derive solutions for the twin wall linking two tetragonal variants of the
cubic-tetragonal ferroelastic transformation, including for the first time the
dilatational and shear energies and strains. Our solutions satisfy the
compatibility relations exactly and are obtained at all temperatures. They
require four non-vanishing strains except at the Barsch-Krumhansl temperature
TBK (where only the two deviatoric strains are needed). Between the critical
temperature and TBK, material in the wall region is dilated, while below TBK it
is compressed. In agreement with experiment and more general theory, the twin
wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a
function of temperature and we derive a simple estimate which agrees well with
these values.Comment: 4 pages (revtex), 3 figure
Weakly coupled states on branching graphs
We consider a Schr\"odinger particle on a graph consisting of links
joined at a single point. Each link supports a real locally integrable
potential ; the self--adjointness is ensured by the type
boundary condition at the vertex. If all the links are semiinfinite and ideally
coupled, the potential decays as along each of them, is
non--repulsive in the mean and weak enough, the corresponding Schr\"odinger
operator has a single negative eigenvalue; we find its asymptotic behavior. We
also derive a bound on the number of bound states and explain how the
coupling constant may be interpreted in terms of a family of
squeezed potentials.Comment: LaTeX file, 7 pages, no figure
Slow-roll corrections to inflaton fluctuations on a brane
Quantum fluctuations of an inflaton field, slow-rolling during inflation are
coupled to metric fluctuations. In conventional four dimensional cosmology one
can calculate the effect of scalar metric perturbations as slow-roll
corrections to the evolution of a massless free field in de Sitter spacetime.
This gives the well-known first-order corrections to the field perturbations
after horizon-exit. If inflaton fluctuations on a four dimensional brane
embedded in a five dimensional bulk spacetime are studied to first-order in
slow-roll then we recover the usual conserved curvature perturbation on
super-horizon scales. But on small scales, at high energies, we find that the
coupling to the bulk metric perturbations cannot be neglected, leading to a
modified amplitude of vacuum oscillations on small scales. This is a large
effect which casts doubt on the reliability of the usual calculation of
inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure
Slow-roll corrections to inflaton fluctuations on a brane
Quantum fluctuations of an inflaton field, slow-rolling during inflation are
coupled to metric fluctuations. In conventional four dimensional cosmology one
can calculate the effect of scalar metric perturbations as slow-roll
corrections to the evolution of a massless free field in de Sitter spacetime.
This gives the well-known first-order corrections to the field perturbations
after horizon-exit. If inflaton fluctuations on a four dimensional brane
embedded in a five dimensional bulk spacetime are studied to first-order in
slow-roll then we recover the usual conserved curvature perturbation on
super-horizon scales. But on small scales, at high energies, we find that the
coupling to the bulk metric perturbations cannot be neglected, leading to a
modified amplitude of vacuum oscillations on small scales. This is a large
effect which casts doubt on the reliability of the usual calculation of
inflaton fluctuations on the brane neglecting their gravitational coupling.Comment: 18 pages, 4 figure
- …
