407 research outputs found

    Order and nFl Behavior in UCu4Pd

    Full text link
    We have studied the role of disorder in the non-Fermi liquid system UCu4Pd using annealing as a control parameter. Measurement of the lattice parameter indicates that this procedure increases the crystallographic order by rearranging the Pd atoms from the 16e to the 4c sites. We find that the low temperature properties depend strongly on annealing. Whereas the non-Fermi liquid behavior in the specific heat can be observed over a larger temperature range after annealing, the clear non-Fermi liquid behavior of the resistivity of the unannealed sample below 10 K disappears. We come to the conclusion that this argues against the Kondo disorder model as an explanation for the non-Fermi liquid properties of both as-prepared and annealed UCu4Pd

    Magnetic-Field Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    We report low-temperature calorimetric, magnetic and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh2_2Si2_2 (TN={T_N =} 70 mK) as a function of magnetic field BB. While for fields exceeding the critical value Bc0{B_{c0}} at which TN0{T_N\to0} the low temperature resistivity shows an AT2{AT^2} dependence, a 1/(BBc0){1/(B-B_{c0})} divergence of A(B){A(B)} upon reducing BB to Bc0{B_{c0}} suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let

    The impact of diabetes on multiple avoidable admissions: a cross-sectional study

    Get PDF
    Background Multiple admissions for ambulatory care sensitive conditions (ACSC) are responsible for an important proportion of health care expenditures. Diabetes is one of the conditions consensually classified as an ACSC being considered a major public health concern. The aim of this study was to analyse the impact of diabetes on the occurrence of multiple admissions for ACSC. Methods We analysed inpatient data of all public Portuguese NHS hospitals from 2013 to 2015 on multiple admissions for ACSC among adults aged 18 or older. Multiple ACSC users were identified if they had two or more admissions for any ACSC during the period of analysis. Two logistic regression models were computed. A baseline model where a logistic regression was performed to assess the association between multiple admissions and the presence of diabetes, adjusting for age and sex. A full model to test if diabetes had no constant association with multiple admissions by any ACSC across age groups. Results Among 301,334 ACSC admissions, 144,209 (47.9%) were classified as multiple admissions and from those, 59,436 had diabetes diagnosis, which corresponded to 23,692 patients. Patients with diabetes were 1.49 times (p < 0,001) more likely to be admitted multiple times for any ACSC than patients without diabetes. Younger adults with diabetes (18–39 years old) were more likely to become multiple users. Conclusion Diabetes increases the risk of multiple admissions for ACSC, especially in younger adults. Diabetes presence is associated with a higher resource utilization, which highlights the need for the implementation of adequate management of chronic diseases policies.NOVASaudeinfo:eu-repo/semantics/publishedVersio

    From global to local: reshoring for sustainability

    Get PDF
    The UK clothing industry has seen the extensive offshoring of manufacturing, which has created fragmented global supply chains; these present a range of supply issues and challenges, including many related to sustainability. Reshoring is a reversion of a previous offshoring decision, thereby ‘bringing manufacturing back home’ (Gray et al. J Supply Chain Management 49(2):27–33, 2013), and can be motivated by increased costs and supply management problems. While not a new phenomenon, the reshoring of activities is growing in practice and there is an imperative for academic research (Fratocchi et al. J Purch Supply Manag 20:54–59, 2014). Through an in-depth longitudinal case study, this paper explores how sustainability can be addressed through reshoring; the studied UK-based clothing SME has strong principles and is explicitly committed to bringing its supply chain ‘home’. There is a recognised need for more OM research using a social lens (Burgess and Singh Oper Manag Res 5:57–68, 2012), so Social Network Theory (SNT) is employed to examine the reshoring decision-making process. SNT applies a relational, qualitative approach to understand the interactions between network actors, and focuses on the types and strengths of relationships and how they provide context for decisions (Galaskiewicz J Supply Chain Manag 47(1):4–8, 2011). The findings demonstrate the importance of socially complex, long-term relationships in managing a sustainable supply network. These relationships contribute to the resources that a firm can harness in its supply practices, and SNT extends this with its emphasis on the strength of ties with suppliers, and the trust, reciprocity and shared meanings it engenders. For the studied firm these advantages are derived through its localised supply chain, and collaborative supplier relationships, and its progressive reshoring of activities is integral to achieving its sustainability principles

    Use of twitter data for waste minimisation in beef supply chain

    Get PDF
    Approximately one third of the food produced is discarded or lost, which accounts for 1.3 billion tons per annum. The waste is being generated throughout the supply chain viz. farmers, wholesalers/processors, logistics, retailers and consumers. The majority of waste occurs at the interface of retailers and consumers. Many global retailers are making efforts to extract intelligence from customer’s complaints left at retail store to backtrack their supply chain to mitigate the waste. However, majority of the customers don’t leave the complaints in the store because of various reasons like inconvenience, lack of time, distance, ignorance etc. In current digital world, consumers are active on social media and express their sentiments, thoughts, and opinions about a particular product freely. For example, on an average, 45,000 tweets are tweeted daily related to beef products to express their likes and dislikes. These tweets are large in volume, scattered and unstructured in nature. In this study, twitter data is utilised to develop waste minimization strategies by backtracking the supply chain. The execution process of proposed framework is demonstrated for beef supply chain. The proposed model is generic enough and can be applied to other domains as well

    Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives

    Full text link
    [EN] Digital transformation provide supply chains (SCs) with extensive accurate data that should be combined with analytical techniques to improve their management. Among these techniques Artificial Intelligence (AI) has proved their suitability, memory and ability to manage uncertain and constantly changing information. Despite the fact that a number of AI literature reviews exist, no comprehensive review of reviews for the SC operations planning has yet been conducted. This paper aims to provide a comprehensive review of AI literature reviews in a structured manner to gain insights into their evolution in incorporating new ICTs and collaboration. Results show that hybrization man-machine and collaboration and ethical aspects are understudied.This research has been funded by the project entitled NIOTOME (Ref. RTI2018-102020-B-I00) (MCI/AEI/FEDER, UE). The first author was supported by the Generalitat Valenciana (Conselleria de Educación, Investigación, Cultura y Deporte) under Grant ACIF/2019/021.Rodríguez-Sánchez, MDLÁ.; Alemany Díaz, MDM.; Boza, A.; Cuenca, L.; Ortiz Bas, Á. (2020). Artificial Intelligence in Supply Chain Operations Planning: Collaboration and Digital Perspectives. IFIP Advances in Information and Communication Technology. 598:365-378. https://doi.org/10.1007/978-3-030-62412-5_30S365378598Lezoche, M., Hernandez, J.E., Alemany, M.M.E., Díaz, E.A., Panetto, H., Kacprzyk, J.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103–187 (2020)Stock, J.R., Boyer, S.L.: Developing a consensus definition of supply chain management: a qualitative study. Int. J. Phys. Distrib. Logistics Manag. 39(8), 690–711 (2009)Min, H.: Artificial intelligence in supply chain management: theory and applications. Int. J. Logistics Res. Appl. 13(1), 13–39 (2010). https://doi.org/10.1080/13675560902736537Hariri, R.H., Fredericks, E.M., Bowers, K.M.: Uncertainty in big data analytics: survey, opportunities, and challenges. J. Big Data 6(1), 1–16 (2019). https://doi.org/10.1186/s40537-019-0206-3Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. Int. J. Inf. Manage. 48(2019), 63–71 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.01.021McCarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E.: A proposal for the dartmouth summer research project on artificial intelligence. AI Mag. 27(4), 12–14 (2006)Barr, A., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 2. Heuristech: William Kaufmann, Pitman (1982)High-Level Expert Group on Artificial Intelligence, European Commission. A definition of AI: main capabilities and disciplines (2019)Cioffi, R., Travaglioni, M., Piscitelli, G., Petrillo, A., De Felice, F.: Artificial intelligence and machine learning applications in smart production: progress, trends, and directions. Sustainability (Switzerland) 12(2) (2020). https://doi.org/10.3390/su12020492Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43(6), 1928–1973 (2019). https://doi.org/10.1002/er.4333Duan, Y., Edwards, J.S., Dwivedi, Y.K.: Artificial intelligence for decision-making in the era of big data. Evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019)Varshney, S., Jigyasu, R., Sharma, A., Mathew, L.: Review of various artificial intelligence techniques and its applications. IOP Conf. Ser. Mater. Sci. Eng. 594(1) (2019)Cheng, L., Yu, T.: A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int. J. Energy Res. 43, 1928–1973 (2019)Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020Metaxiotis, K.S., Askounis, D., Psarras, J.: Expert Systems In Production Planning And Scheduling: A State-Of-The-Art Survey. J. Intell. Manuf. 13(4), 253–260 (2002). https://doi.org/10.1023/A:1016064126976Power, Y., Bahri, P.A.: Integration techniques in intelligent operational management: a review. Knowl. Based Syst. 18(2–3), 89–97 (2005). https://doi.org/10.1016/j.knosys.2004.04.009Shen, W., Hao, Q., Yoon, H.J., Norrie, D.H.: Applications of agent-based systems in intelligent manufacturing: an updated review. Adv. Eng. Inform. 20(4), 415–431 (2006). https://doi.org/10.1016/j.aei.2006.05.004Kobbacy, K.A.H., Vadera, S., Rasmy, M.H.: AI and OR in management of operations: history and trends. J. Oper. Res. Soc. 58(1), 10–28 (2007). https://doi.org/10.1057/palgrave.jors.2602132Zhang, W.J., Xie, S.Q.: Agent technology for collaborative process planning: a review. Int. J. Adv. Manuf. Technol. 32(3), 315–325 (2007). https://doi.org/10.1007/s00170-005-0345-xIbáñez, O., Cordón, O., Damas, S., Magdalena, L.: A review on the application of hybrid artificial intelligence systems to optimization problems in operations management. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 360–367. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_43Kobbacy, K.A.H., Vadera, S.: A survey of AI in operations management from 2005 to 2009. J. Manuf. Technol. Manag. 22(6), 706–733 (2011). https://doi.org/10.1108/17410381111149602Guo, Z.X., Wong, W.K., Leung, S.Y.S., Li, M.: Applications of artificial intelligence in the apparel industry: a review. Text. Res. J. 81(18), 1871–1892 (2011). https://doi.org/10.1177/0040517511411968Priore, P., Gómez, A., Pino, R., Rosillo, R.: Dynamic scheduling of manufacturing systems using machine learning: an updated review. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 28(1), 83–97 (2014). https://doi.org/10.1017/S0890060413000516Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72(1–4), 403–418 (2014). https://doi.org/10.1007/s00170-014-5674-1Ngai, E.W.T., Peng, S., Alexander, P., Moon, K.K.L.: Decision support and intelligent systems in the textile and apparel supply chain: an academic review of research articles. Expert Syst. Appl. 41(1), 81–91 (2014). https://doi.org/10.1016/j.eswa.2013.07.013Rooh, U.A., Li, A., Ali, M.M.: Fuzzy, neural network and expert systems methodologies and applications - a review. J. Mob. Multimedia 11, 157–176 (2015)Bello, O., Teodoriu, C., Yaqoob, T., Oppelt, J., Holzmann, J., Obiwanne, A.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: Society of Petroleum Engineers - SPE Nigeria Annual International Conference and Exhibition (2016)Arvitrida, N.I.: A review of agent-based modeling approach in the supply chain collaboration context. IOP Conf. Ser. Mater. Sci. Eng. 337(1) (2018). https://doi.org/10.1088/1757-899x/337/1/012015Zanon, L.G., Carpinetti, L.C.R.: Fuzzy cognitive maps and grey systems theory in the supply chain management context: a literature review and a research proposal. In: IEEE International Conference on Fuzzy Systems, July 2018, pp. 1–8 (2018). https://doi.org/10.1109/fuzz-ieee.2018.8491473Burggräf, P., Wagner, J., Koke, B.: Artificial intelligence in production management: a review of the current state of affairs and research trends in academia. In: 2018 International Conference on Information Management and Processing, ICIMP 2018, January 2018, pp. 82–88 (2018). https://doi.org/10.1109/icimp1.2018.8325846Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0. Inf. Fusion 50, 92–111 (2019). https://doi.org/10.1016/j.inffus.2018.10.005Ni, D., Xiao, Z., Lim, M.K.: A systematic review of the research trends of machine learning in supply chain management. Int. J. Mach. Learn. Cybernet. 11(7), 1463–1482 (2019). https://doi.org/10.1007/s13042-019-01050-0Ning, C., You, F.: Optimization under uncertainty in the era of big data and deep learning: when machine learning meets mathematical programming. Comput. Chem. Eng. 125, 434–448 (2019). https://doi.org/10.1016/j.compchemeng.2019.03.034Okwu, M.O., Nwachukwu, A.N.: A review of fuzzy logic applications in petroleum exploration, production and distribution operations. J. Petrol. Explor. Prod. Technol. 9(2), 1555–1568 (2018). https://doi.org/10.1007/s13202-018-0560-2Weber, F.D., Schütte, R.: State-of-the-art and adoption of artificial intelligence in retailing. Digit. Policy Regul. Gov. 21(3), 264–279 (2019). https://doi.org/10.1108/DPRG-09-2018-0050Giri, C., Jain, S., Zeng, X., Bruniaux, P.: A detailed review of artificial intelligence applied in the fashion and apparel industry. IEEE Access 7, 95376–95396 (2019). https://doi.org/10.1109/ACCESS.2019.2928979Leo Kumar, S.P.: Knowledge-based expert system in manufacturing planning: State-of-the-art review. Int. J. Prod. Res. 57(15–16), 4766–4790 (2019). https://doi.org/10.1080/00207543.2018.1424372Barua, L., Zou, B., Zhou, Y.: Machine learning for international freight transportation management: a comprehensive review. Res. Transp. Bus. Manag. (2020). https://doi.org/10.1016/j.rtbm.2020.100453Chai, J., Ngai, E.W.T.: Decision-making techniques in supplier selection: recent accomplishments and what lies ahead. Expert Syst. Appl. 140 (2020). https://doi.org/10.1016/j.eswa.2019.112903Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7Ekramifard, A., Amintoosi, H., Seno, A.H., Dehghantanha, A., Parizi, R.M.: A systematic literature review of integration of blockchain and artificial intelligence. In: Choo, K.-K.R., Dehghantanha, A., Parizi, R.M. (eds.) Blockchain Cybersecurity, Trust and Privacy. AIS, vol. 79, pp. 147–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38181-3_8Vrbka, J., Rowland, Z.: Using artificial intelligence in company management. In: Ashmarina, S.I., Vochozka, M., Mantulenko, V.V. (eds.) ISCDTE 2019. LNNS, vol. 84, pp. 422–429. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-27015-5_51Leslie, D.: Understanding artificial intelligence ethics and safety: a guide for the responsible design and implementation of AI systems in the public sector. The Alan Turing Institute (2019)Queiroz, M.M., Ivanov, D., Dolgui, A., et al.: Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Ann Oper Res (2020). https://doi.org/10.1007/s10479-020-03685-
    corecore