21 research outputs found

    Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor

    Get PDF
    Hallucinogens like lysergic acid diethylamide (LSD), psilocybin, and substituted N-benzyl phenylalkylamines are widely used recreationally with psilocybin being considered as a therapeutic for many neuropsychiatric disorders including depression, anxiety, and substance abuse. How psychedelics mediate their actions—both therapeutic and hallucinogenic—are not understood, although activation of the 5-HT2A serotonin receptor (HTR2A) is key. To gain molecular insights into psychedelic actions, we determined the active-state structure of HTR2A bound to 25-CN-NBOH—a prototypical hallucinogen—in complex with an engineered Gαq heterotrimer by cryoelectron microscopy (cryo-EM). We also obtained the X-ray crystal structures of HTR2A complexed with the arrestin-biased ligand LSD or the inverse agonist methiothepin. Comparisons of these structures reveal determinants responsible for HTR2A-Gαq protein interactions as well as the conformational rearrangements involved in active-state transitions. Given the potential therapeutic actions of hallucinogens, these findings could accelerate the discovery of more selective drugs for the treatment of a variety of neuropsychiatric disorders. © 2020 Elsevier Inc.; Roth et al. reveal structurally how psychedelics, including LSD, psilocin, mescaline, and various N-BOH analogs, mediate their therapeutic and hallucinogenic effects by binding to and activating their molecular target, the serotonin (5-HT) 2A receptor coupled with G-protein Gαq

    Insights into distinct signaling profiles of the µOR activated by diverse agonists

    Get PDF
    Drugs targeting the μ-opioid receptor (μOR) are the most effective analgesics available but are also associated with fatal respiratory depression through a pathway that remains unclear. Here we investigated the mechanistic basis of action of lofentanil (LFT) and mitragynine pseudoindoxyl (MP), two μOR agonists with different safety profiles. LFT, one of the most lethal opioids, and MP, a kratom plant derivative with reduced respiratory depression in animal studies, exhibited markedly different efficacy profiles for G protein subtype activation and β-arrestin recruitment. Cryo-EM structures of μOR-Gi1 complex with MP (2.5 Å) and LFT (3.2 Å) revealed that the two ligands engage distinct subpockets, and molecular dynamics simulations showed additional differences in the binding site that promote distinct active-state conformations on the intracellular side of the receptor where G proteins and β-arrestins bind. These observations highlight how drugs engaging different parts of the μOR orthosteric pocket can lead to distinct signaling outcomes

    Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD

    Get PDF
    Serotonin (5-hydroxytryptamine [5-HT]) 5-HT2-family receptors represent essential targets for lysergic acid diethylamide (LSD) and all other psychedelic drugs. Although the primary psychedelic drug effects are mediated by the 5-HT2A serotonin receptor (HTR2A), the 5-HT2B serotonin receptor (HTR2B) has been used as a model receptor to study the activation mechanisms of psychedelic drugs due to its high expression and similarity to HTR2A. In this study, we determined the cryo-EM structures of LSD-bound HTR2B in the transducer-free, Gq-protein-coupled, and β-arrestin-1-coupled states. These structures provide distinct signaling snapshots of LSD's action, ranging from the transducer-free, partially active state to the transducer-coupled, fully active states. Insights from this study will both provide comprehensive molecular insights into the signaling mechanisms of the prototypical psychedelic LSD and accelerate the discovery of novel psychedelic drugs

    Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity

    Get PDF
    There is considerable interest in screening ultralarge chemical libraries for ligand discovery, both empirically and computationally1–4. Efforts have focused on readily synthesizable molecules, inevitably leaving many chemotypes unexplored. Here we investigate structure-based docking of a bespoke virtual library of tetrahydropyridines—a scaffold that is poorly sampled by a general billion-molecule virtual library but is well suited to many aminergic G-protein-coupled receptors. Using three inputs, each with diverse available derivatives, a one pot C–H alkenylation, electrocyclization and reduction provides the tetrahydropyridine core with up to six sites of derivatization5–7. Docking a virtual library of 75 million tetrahydropyridines against a model of the serotonin 5-HT2A receptor (5-HT2AR) led to the synthesis and testing of 17 initial molecules. Four of these molecules had low-micromolar activities against either the 5-HT2A or the 5-HT2B receptors. Structure-based optimization led to the 5-HT2AR agonists (R)-69 and (R)-70, with half-maximal effective concentration values of 41 nM and 110 nM, respectively, and unusual signalling kinetics that differ from psychedelic 5-HT2AR agonists. Cryo-electron microscopy structural analysis confirmed the predicted binding mode to 5-HT2AR. The favourable physical properties of these new agonists conferred high brain permeability, enabling mouse behavioural assays. Notably, neither had psychedelic activity, in contrast to classic 5-HT2AR agonists, whereas both had potent antidepressant activity in mouse models and had the same efficacy as antidepressants such as fluoxetine at as low as 1/40th of the dose. Prospects for using bespoke virtual libraries to sample pharmacologically relevant chemical space will be considered

    Structure of G-alpha-q bound to its chaperone Ric-8A

    No full text

    Structure of G-alpha-i bound to its chaperone Ric-8A

    No full text

    CryoEM Structure of mGlu2 - Gi Complex

    No full text
    corecore