608 research outputs found
Insight into the redox partner interaction mechanism in cytochrome P450BM-3 using molecular dynamics simulations
Flavocytochrome P450BM-3 is a soluble bacterial reductase composed of two flavin (FAD/FMN) and one HEME domains. In this article, we have performed molecular dynamics simulations on both the isolated FMN and HEME domains and their crystallographic complex, with the aim to study their binding modes and to garner insight into the interdomain electron transfer (ET) mechanism. The results evidenced an interdomain conformational rearrangement that reduces the average distance between the FMN and HEME cofactors from 1.81 nm, in the crystal structure, to an average value of 1.41 ± 0.09 nm along the simulation. This modification is in agreement with previously proposed hypotheses suggesting that the crystallographic FMN/HEME complex is not in the optimal arrangement for favorable ET rate under physiological conditions. The calculation of the transfer rate along the simulation, using the Pathways Path method, demonstrated the occurrence of seven ET pathways between the two redox centers, with three of them providing ET rates (KET ) comparable with the experimental one. The sampled ET pathways comprise the amino acids N319, L322, F390, K391, P392, F393, A399, C400, and Q403 of the HEME domain and M490 of the FMN domain. The values of KET closer to the experiment were found along the pathways FMN(C7) → F390 → K391 → P392 → HEME(Fe) and FMN(C8) → M490 → F393 → HEME(Fe). Finally, the analysis of the collective modes of the protein complex evidences a clear correlation of the first two essential modes with the activation of the most effective ET pathways along the trajectory. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 197-209, 2014
A Photoenzymatic NADH regeneration system
A photoenzymatic NADH regeneration system was established. The combination of deazariboflavin as a photocatalyst with putidaredoxin reductase enabled the selective reduction of NAD+ into the enzyme‐active 1,4‐NADH to promote an alcohol dehydrogenase catalysed stereospecific reduction reaction. The catalytic turnover of all the reaction components was demonstrated. Factors influencing the efficiency of the overall system were identified
Electron transfer ferredoxins with unusual cluster binding motifs support secondary metabolism in many bacteria
The proteins responsible for controlling electron transfer in bacterial secondary metabolism are not always known or characterised. Here we demonstrate that many bacteria contain a set of unfamiliar ferredoxin encoding genes which are associated with those of cytochrome P450 (CYP) monooxygenases and as such are involved in anabolic and catabolic metabolism. The model organism Mycobacterium marinum M contains eleven of these genes which encode [3Fe–4S] or [4Fe–4S] single cluster containing ferredoxins but which have unusual iron–sulfur cluster binding motif sequences, CXX?XXC(X)nCP, where ‘?’ indicates a variable amino acid residue. Rather than a cysteine residue, which is highly conserved in [4Fe–4S] clusters, or alanine or glycine residues, which are common in [3Fe–4S] ferredoxins, these genes encode at this position histidine, asparagine, tyrosine, serine, threonine or phenylalanine. We have purified, characterised and reconstituted the activity of several of these CYP/electron transfer partner systems and show that all those examined contain a [3Fe–4S] cluster. Furthermore, the ferredoxin used and the identity of the variable motif residue in these proteins affects the functionality of the monooxygenase system and has a significant influence on the redox properties of the ferredoxins. Similar ferredoxin encoding genes were identified across Mycobacterium species, including in the pathogenic M. tuberculosis and M. ulcerans, as well as in a wide range of other bacteria such as Rhodococcus and Streptomyces. In the majority of instances these are associated with CYP genes. These ferredoxin systems are important in controlling electron transfer across bacterial secondary metabolite production processes which include antibiotic and pigment formation among others
Candidate-gene based GWAS identifies reproducible DNA markers for metabolic pyrethroid resistance from standing genetic variation in East African Anopheles gambiae.
Metabolic resistance to pyrethroid insecticides is widespread in Anopheles mosquitoes and is a major threat to malaria control. DNA markers would aid predictive monitoring of resistance, but few mutations have been discovered outside of insecticide-targeted genes. Isofemale family pools from a wild Ugandan Anopheles gambiae population, from an area where operational pyrethroid failure is suspected, were genotyped using a candidate-gene enriched SNP array. Resistance-associated SNPs were detected in three genes from detoxification superfamilies, in addition to the insecticide target site (the Voltage Gated Sodium Channel gene, Vgsc). The putative associations were confirmed for two of the marker SNPs, in the P450 Cyp4j5 and the esterase Coeae1d by reproducible association with pyrethroid resistance in multiple field collections from Uganda and Kenya, and together with the Vgsc-1014S (kdr) mutation these SNPs explained around 20% of variation in resistance. Moreover, the >20 Mb 2La inversion also showed evidence of association with resistance as did environmental humidity. Sequencing of Cyp4j5 and Coeae1d detected no resistance-linked loss of diversity, suggesting selection from standing variation. Our study provides novel, regionally-validated DNA assays for resistance to the most important insecticide class, and establishes both 2La karyotype variation and humidity as common factors impacting the resistance phenotype
Développement de nouveaux composés antiandrogéniques dans une visée thérapeutique contre le cancer de la prostate
Recommended from our members
Hexyl-(cuban-1-yl-methyl)-biguanide (HCB) inhibits hormone therapy resistant breast cancer cells, in part by Inhibiting CYP3A4 arachidonic acid epoxygenase activity.
Abstract 2689: Breast cancer inhibition by a novel and potent biguanide, N1-hexyl-N5-benzyl-biguanide
Abstract:
Metformin is a widely used biguanide diabetes drug that is associated with decreased breast cancer risk and is currently being studied for treatment and prevention of breast cancer. While metformin and biguanides buformin and phenformin exhibit inhibitory activity against breast cancer in vitro and in vivo, they lack potency (IC50=5-20 mM) and their mechanisms of action remain unclear. More potent biguanides may provide insights into biguanide anti-cancer activity and we therefore studied the novel biguanide N1-hexyl-N5-benzyl-biguanide mesylate (HBB), which potently inhibits the MCF-7 and MDA-MB-231 breast cancer lines (IC50=20 uM for both lines). HBB induces AMPK phosphorylation in both lines at 10 uM concentration, whereas similarly dosed metformin, buformin or phenformin exhibits no activity. HBB also inhibits STAT3 phosphorylation at 10 uM concentration, whereas metformin dosed at 10 uM exhibits no activity. HBB reduced the mitochondrial membrane potential of both lines, but the effect was more prominent in the MDA-MB-231 line. HBB also induced ROS within 2.5 hours of exposure in the MCF-7 and MDA-MB-231 lines and caused rapid necrosis, but not apoptosis. N-acetylcysteine provides partial protection from HBB for MDA-231 line, but not the MCF-7 line. HBB provides proof of principle that highly potent biguanides can be synthesized with at least 250-fold greater potency than metformin, which can provide insights into the cancer inhibitory mechanisms of biguanide drugs. R01 CA113570, Randy Shaver Foundation, CTSI University of Minnesota
Citation Format: Zhijun Guo, Kathryn J. Chavez, Juan Alvarez, Xia Zhang, Beverly Norris, Michael Maher, Monique Morgan, Robert J. Schumacher, Rebecca Cuellar, Irina F. Sevrioukova, Thomas L. Poulos, Ilia Denisov, Stephen G. Sligar, Kalpna Gupta, Ian A. Blair, Jorge Capdevila, Ameeta Kelekar, Elizabeth Amin, Gunda Georg, David A. Potter. Breast cancer inhibition by a novel and potent biguanide, N1-hexyl-N5-benzyl-biguanide. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2689. doi:10.1158/1538-7445.AM2014-268
Abstract 44: Hexyl-benzyl-biguanide (HBB) potently and selectively inhibits CYP3A4 epoxygenase activity and inhibits EET stabilization of mitochondrial respiration in ER+HER2- breast cancer cells, inducing glycolysis and pyruvate biosynthesis
Abstract:
Cytochrome P450 3A4 (CYP3A4) promotes ER+HER2- breast cancer cell proliferation and survival, in part, by biosynthesis of epoxyeicosatrienoic acids (EETs). EETs are known to regulate mitochondrial function in non-transformed cells, but the roles of CYP3A4 and EETs in regulation of breast cancer bioenergetics are unknown. Hexyl-benzyl-biguanide (HBB) is useful probe of CYP3A4 epoxygenase activity and selectively inhibits EET biosynthesis (IC50 = 9 uM vs. IC50 = 50 uM for CYP2C8). HBB caused depolarization of mitochondria in MCF-7 cells, while (±)-14,15-EET provided partial protection. The soluble epoxide hydrolase (sEH) inhibitor t-AUCB ameliorated inhibition of oxygen consumption rates (OCR) by HBB (20 uM), while there was no effect on extracellular acidification rate (ECAR), indicating that the primary effect of HBB is on OCR. At 30 minutes, HBB added to MCF-7 cells transiently suppressed phosphorylation of pyruvate kinase muscle isozyme 2 (PKM2) on Tyr-105, which has been reported to favor enzymatically inactive dimer over active tetramer. Suppression of phosphorylated PKM2 correlated with subsequent PKM2 tetramer formation and increase of intracellular pyruvate and extracellular lactate at 1 hour. The (±)-14,15-EET regioisomer reduced the pro-glycolytic PKM2 tetramer at 1 hour, suggesting that HBB may promote PKM2 tetramer, in part, through reduction of EET. Prolonged exposure to HBB (20 uM) in cultured cells activated phosphorylation of PKM2 on Tyr-105, but there was increased cellular necrosis correlating with reduced mitochondrial respiration and reduction of ATP stores, indicating that loss of respiration was the dominant effect. HBB inhibited the ER+HER2- MCF-7 xenograft, similar to CYP3A4 silencing. HBB promoted phosphorylation of intratumoral PKM2 on Tyr-105, consistent with long-term exposure to HBB in cultured MCF-7 cells. Notably, MCF-7 tumor response to HBB did not correlate with phosphorylation of AMPK-alpha on Thr-172, a marker of AMPK activation. Metformin (5 mM) exhibited no effect on PKM2 or its phosphorylation in cultured MCF-7 cells. Together, these results indicate that part of the inhibitory effect of HBB on ER+HER2- breast cancer is mediated through inhibition of respiration.
Significance: These results establish HBB as a useful chemical probe of respiration, with indirect effects on PKM2 regulation. HBB may also be useful as a potential therapeutic candidate for ER+HER2- breast cancer.
Citation Format: Zhijun Guo, Irina Sevrioukova, Eric Hanse, Xia Zhang, Ilia Denisov, Ting-Lan Chiu, Rebecca Cuellar, Christian Torres, Julia Wulfkuhle, Emanuel Petricoin, Qing Cao, Haitao Chu, Beverly Norris, Robert Schumacher, Ameeta Kelekar, Ian Blair, Jorge Capdevila, John Falck, Thomas Poulos, Steven Sligar, Gunda Georg, Elizabeth Amin, David A. Potter. Hexyl-benzyl-biguanide (HBB) potently and selectively inhibits CYP3A4 epoxygenase activity and inhibits EET stabilization of mitochondrial respiration in ER+HER2- breast cancer cells, inducing glycolysis and pyruvate biosynthesis. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 44
Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca
Cytochrome P450 monooxygenases are valuable biocatalysts due to their ability to hydroxylate unactivated carbon atoms using molecular oxygen. We have cloned the gene for a new cytochrome P450 monooxygenase, named CYP154H1, from the moderately thermophilic soil bacterium Thermobifida fusca. The enzyme was overexpressed in Escherichia coli at up to 14% of total soluble protein and purified to homogeneity in three steps. CYP154H1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida DSM 50198 as surrogate electron transfer partners. In biocatalytic reactions with different aliphatic and aromatic substrates of varying size, the enzyme converted small aromatic and arylaliphatic compounds like ethylbenzene, styrene, and indole. Furthermore, CYP154H1 also accepted different arylaliphatic sulfides as substrates chemoselectively forming the corresponding sulfoxides and sulfones. The enzyme is moderately thermostable with an apparent melting temperature of 67°C and exhibited still 90% of initial activity after incubation at 50°C
A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs
Structural interactions that enable electron transfer to cytochromeâ P450 (CYP450) from its redox partner CYP450â reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membraneâ bound functional complex to reveal interactions between the fullâ length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochromeâ b5 (cytâ b5), Argâ 125 on the Câ helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study proteinâ protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.Auf der Grundlage einer Strukturanalyse von Cytochrom P450 (CYP450) im Komplex mit seinem Redoxpartner kann der Pfad des selektiven Elektronentransfers verstanden werden. Strukturelle Wechselwirkungen in einem solchen Komplex, verankert in einer Lipidmembran, sind eine Grundvoraussetzung für diese Funktion. Der Stoffwechsel von Wirkâ und Fremdstoffen durch diverse mikrosomale CYPs in ihrem nativen Membranumfeld wird aufgeklärt.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/1/ange201802210.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/2/ange201802210-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/3/ange201802210_am.pd
- …
