1,011 research outputs found

    Study of interfacial conductivity Final report

    Get PDF
    Statistical theory of interfacial thermal conductivity and crystal growth under weightlessnes

    Operational indistinguishably of varying speed of light theories

    Full text link
    The varying speed of light theories have been recently proposed to solve the standard model problems and anomalies in the ultra high energy cosmic rays. These theories try to formulate a new relativity with no assumptions about the constancy of the light speed. In this regard, we study two theories and want to show that these theories are not the new theories of relativity, but only re-descriptions of Einstein's special relativity.Comment: 5 pages, 2 figures, title changed, minor changes in notations and formulae, a paragraph added, Int. J. Mod. Phys. D (in press) v

    Radiative aspects of lunar materials Final report

    Get PDF
    Thermal radiation model for lunar material

    Three tests of general relativity via Fermat's principle and the phase of Bessel functions

    Full text link
    Fermat's principle applied to a flat metric in the plane yields the phase of a Bessel function in the periodic domain for a constant index of refraction. Gravitational forces cause the index of refraction to vary and lead to a modified phase of the Bessel function. A distinction is made between the forces that cause acceleration: the gravitational force affects the optical properties of the medium whereas the centrifugal force does not, the latter being built into the phase of oscillations of the Bessel function. The time delay in radar echoes from planets is determined from Fermat's principle where the velocity of light is the phase velocity and the index of refraction varies on account of the gravitational potential. The deflection of light by a massive body is shown to be produced by a quadrupole interaction, and the perihelion shift requires both the gravitational potential, producing a closed orbit, and the quadrupole, causing the perihelion to rotate.Comment: 16 page

    Nothing but Relativity, Redux

    Full text link
    Here we show how spacetime transformations consistent with the principle of relativity can be derived without an explicit assumption of the constancy of the speed of light, without gedanken experiments involving light rays, and without an assumption of differentiability, or even continuity, for the spacetime mapping. Hence, these historic results could have been derived centuries ago, even before the advent of calculus. This raises an interesting question: Could Galileo have derived Einsteinian relativity

    A Note on the correspondence between Qubit Quantum Operations and Special Relativity

    Full text link
    We exploit a well-known isomorphism between complex hermitian 2×22\times 2 matrices and R4\mathbb{R}^4, which yields a convenient real vector representation of qubit states. Because these do not need to be normalized we find that they map onto a Minkowskian future cone in E1,3\mathbb{E}^{1,3}, whose vertical cross-sections are nothing but Bloch spheres. Pure states are represented by light-like vectors, unitary operations correspond to special orthogonal transforms about the axis of the cone, positive operations correspond to pure Lorentz boosts. We formalize the equivalence between the generalized measurement formalism on qubit states and the Lorentz transformations of special relativity, or more precisely elements of the restricted Lorentz group together with future-directed null boosts. The note ends with a discussion of the equivalence and some of its possible consequences.Comment: 6 pages, revtex, v3: revised discussio

    Irreducible Multiplets of Three-Quark Operators on the Lattice: Controlling Mixing under Renormalization

    Full text link
    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of three-quark operators. These can be calculated from first principles in lattice QCD. However, on the lattice the problems of operator mixing under renormalization are rather involved. In a systematic approach we investigate this issue in depth. Using the spinorial symmetry group of the hypercubic lattice we derive irreducibly transforming three-quark operators, which allow us to control the mixing pattern.Comment: 13 page

    Relative entropy, Haar measures and relativistic canonical velocity distributions

    Get PDF
    The thermodynamic maximum principle for the Boltzmann-Gibbs-Shannon (BGS) entropy is reconsidered by combining elements from group and measure theory. Our analysis starts by noting that the BGS entropy is a special case of relative entropy. The latter characterizes probability distributions with respect to a pre-specified reference measure. To identify the canonical BGS entropy with a relative entropy is appealing for two reasons: (i) the maximum entropy principle assumes a coordinate invariant form; (ii) thermodynamic equilibrium distributions, which are obtained as solutions of the maximum entropy problem, may be characterized in terms of the transformation properties of the underlying reference measure (e.g., invariance under group transformations). As examples, we analyze two frequently considered candidates for the one-particle equilibrium velocity distribution of an ideal gas of relativistic particles. It becomes evident that the standard J\"uttner distribution is related to the (additive) translation group on momentum space. Alternatively, imposing Lorentz invariance of the reference measure leads to a so-called modified J\"uttner function, which differs from the standard J\"uttner distribution by a prefactor, proportional to the inverse particle energy.Comment: 15 pages: extended version, references adde

    A Lorentz-Poincar\'e type interpretation of the Weak Equivalence Principle

    Full text link
    The validity of the Weak Equivalence Principle relative to a local inertial frame is detailed in a scalar-vector gravitation model with Lorentz-Poincar\'e type interpretation. Given the previously established first Post-Newtonian concordance of dynamics with General Relativity, the principle is to this order compatible with GRT. The gravitationally modified Lorentz transformations, on which the observations in physical coordinates depend, are shown to provide a physical interpretation of \emph{parallel transport}. A development of ``geodesic'' deviation in terms of the present model is given as well.Comment: v1: 9 pages, 2 figures, v2: version to appear in International Journal of Theoretical Physic

    Uniqueness of the mass in the radiating regime

    Get PDF
    The usual approaches to the definition of energy give an ambiguous result for the energy of fields in the radiating regime. We show that for a massless scalar field in Minkowski space-time the definition may be rendered unambiguous by adding the requirement that the energy cannot increase in retarded time. We present a similar theorem for the gravitational field, proved elsewhere, which establishes that the Trautman-Bondi energy is the unique (up to a multiplicative factor) functional, within a natural class, which is monotonic in time for all solutions of the vacuum Einstein equations admitting a smooth ``piece'' of conformal null infinity Scri.Comment: 8 pages, revte
    corecore