1,740 research outputs found
Scaling of in heavy ion collisions
We interpret the scaling of the corrected elliptic flow parameter w.r.t. the
corrected multiplicity, observed to hold in heavy ion collisions for a wide
variety of energies and system sizes. We use dimensional analysis and
power-counting arguments to place constraints on the changes of initial
conditions in systems with different center of mass energy .
Specifically, we show that a large class of changes in the (initial) equation
of state, mean free path, and longitudinal geometry over the observed
are likely to spoil the scaling in observed experimentally. We
therefore argue that the system produced at most Super Proton Synchrotron (SPS)
and Relativistic Heavy Ion Collider (RHIC) energies is fundamentally the same
as far as the soft and approximately thermalized degrees of freedom are
considered. The ``sQGP'' (Strongly interacting Quark-Gluon Plasma) phase, if it
is there, is therefore not exclusive to RHIC. We suggest, as a goal for further
low-energy heavy ion experiments, to search for a ``transition''
where the observed scaling breaks.Comment: Accepted for publication by Phys. Rev. C Based on presentation in
mini-symposium on QGP collective properties, Frankfurt. Discussion expanded,
results adde
A statistical model analysis of fluctuations in heavy ion collisions
We briefly describe two statistical hadronization models, based respectively
on the presence and absence of light quark chemical equilibrium, used to
analyze particle yields in heavy ion collisions. We then try to distinguish
between these models using fluctuations data. We find that while the
non-equilibrium model provides an acceptable description of fluctuations at top
SPS and RHIC energies, both models considerably under-estimate fluctuations at
low SPS energies.Comment: References updated Poster in QM2006 conference, Shangha
Hadron Resonances and Phase Threshold in Heavy Ion Collisions
We show that a measurement of the reaction energy dependence of relative
hadron resonance yields in heavy ion collisions can be used to study the phase
structure of the dense QCD matter created in these collisions, and investigate
the origin of the trends observed in the excitation functions of certain soft
hadronic observables. We show that presence of chemical nonequilibrium in light
quark abundance imparts a characteristic signature on the energy dependence of
resonance yields, that differs considerably from what is expected in the
equilibrium picture.Comment: In press, Phys. Rev.
Hanbury-Brown--Twiss Analysis in a Solvable Model
The analysis of meson correlations by Hanbury-Brown--Twiss interferometry is
tested with a simple model of meson production by resonance decay. We derive
conditions which should be satisfied in order to relate the measured momentum
correlation to the classical source size. The Bose correlation effects are
apparent in both the ratio of meson pairs to singles and in the ratio of like
to unlike pairs. With our parameter values, we find that the single particle
distribution is too distorted by the correlation to allow a straightforward
analysis using pair correlation normalized by the singles rates. An analysis
comparing symmetrized to unsymmetrized pairs is more robust, but nonclassical
off-shell effects are important at realistic temperatures.Comment: 21 pages + 9 figures (tarred etc. using uufiles, submitted
separately), REVTeX 3.0, preprint number: DOE/ER/40561-112/INT93-00-3
Search for the QCD critical point in nuclear collisions at the CERN SPS
Pion production in nuclear collisions at the SPS is investigated with the aim
to search, in a restricted domain of the phase diagram, for power-laws in the
behavior of correlations which are compatible with critical QCD. We have
analyzed interactions of nuclei of different size (p+p, C+C, Si+Si, Pb+Pb) at
158 GeV adopting, as appropriate observables, scaled factorial moments in a
search for intermittent fluctuations in transverse dimensions. The analysis is
performed for pairs with invariant mass very close to the two-pion
threshold. In this sector one may capture critical fluctuations of the sigma
component in a hadronic medium, even if the -meson has no well defined
vacuum state. It turns out that for the Pb+Pb system the proposed analysis
technique cannot be applied without entering the invariant mass region with
strong Coulomb correlations. As a result the treatment becomes inconclusive in
this case. Our results for the other systems indicate the presence of power-law
fluctuations in the freeze-out state of Si+Si approaching in size the
prediction of critical QCD.Comment: 31 pages, 11 figure
Source Dimensions in Ultrarelativistic Heavy Ion Collisions
Recent experiments on pion correlations, interpreted as interferometric
measurements of the collision zone, are compared with models that distinguish a
prehadronic phase and a hadronic phase. The models include prehadronic
longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and
rescattering of the produced hadrons. We find that the longitudinal and outward
radii are surprisingly sensitive to the algorithm used for two-body collisions.
The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a
heavy target requires the existence of a prehadronic phase which converts to
the hadronic phase at densities around 0.8-1.0 GeV/fm. The transverse radii
cannot be reproduced without introducing more complex dynamics into the
transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major
change is an additional discussion of the classical two-body collision
algorithm, a (compressed) postscript file of the complete paper including
figures can be obtained from Authors or via anonymous ftp at
ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.
Boundary and Coulomb Effects on Boson Systems in High-Energy Heavy-Ion Collisions
The boundary of a boson system plays an important role in determining the
momentum distribution of the bosons. For a boson system with a cylindrical
boundary, the momentum distribution is enhanced at high transverse momenta but
suppressed at low transverse momenta, relative to a Bose-Einstein distribution.
The boundary effects on systems of massless gluons and massive pions are
studied. For gluons in a quark-gluon plasma, the presence of the boundary may
modify the signals for the quark-gluon plasma. For pions in a pion system in
heavy-ion collisions, Coulomb final-state interactions with the nuclear
participants in the vicinity of the central rapidity region further modify the
momentum distribution at low transverse momenta. By including both the boundary
effect and the Coulomb final-state interactions we are able to account for the
behavior of the transverse momentum spectrum observed in many
heavy-ion experiments, notably at low transverse momenta.Comment: 15 pages Postscript uuencoded tar-comprssed file, 9 Postscript
figures uuencoded tar-compressed fil
Recommended from our members
Dynamic ham-sandwich cuts in the plane
We design efficient data structures for dynamically maintaining a ham-sandwich cut of two point sets in the plane subject to insertions and deletions of points in either set. A ham-sandwich cut is a line that simultaneously bisects the cardinality of both point sets. For general point sets, our first data structure supports each operation in O(n1/3+ε) amortized time and O(n4/3+ε) space. Our second data structure performs faster when each point set decomposes into a small number k of subsets in convex position: it supports insertions and deletions in O(logn) time and ham-sandwich queries in O(klog4n) time. In addition, if each point set has convex peeling depth k , then we can maintain the decomposition automatically using O(klogn) time per insertion and deletion. Alternatively, we can view each convex point set as a convex polygon, and we show how to find a ham-sandwich cut that bisects the total areas or total perimeters of these polygons in O(klog4n) time plus the O((kb)polylog(kb)) time required to approximate the root of a polynomial of degree O(k) up to b bits of precision. We also show how to maintain a partition of the plane by two lines into four regions each containing a quarter of the total point count, area, or perimeter in polylogarithmic time.Engineering and Applied Science
System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and158A GeV beam energy
Measurements of charged pion and kaon production are presented in centrality
selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in
semi-central C+C and Si+Si interactions at 40A GeV. Transverse mass spectra,
rapidity spectra and total yields are determined as a function of centrality.
The system-size and centrality dependence of relative strangeness production in
nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from
the data presented here and published data for C+C and Si+Si collisions at 158A
GeV beam energy. At both energies a steep increase with centrality is observed
for small systems followed by a weak rise or even saturation for higher
centralities. This behavior is compared to calculations using transport models
(UrQMD and HSD), a percolation model and the core-corona approach.Comment: 32 pages, 14 figures, 4 tables, typo table II correcte
Proton -- Lambda Correlations in Central Pb+Pb Collisions at sqrt(s_{NN}) = 17.3 GeV
The momentum correlation between protons and lambda particles emitted from
central Pb+Pb collisions at sqrt(s_{NN}) = 17.3 GeV was studied by the NA49
experiment at the CERN SPS. A clear enhancement is observed for small relative
momenta (q_{inv} < 0.2 GeV). By fitting a theoretical model, which uses the
strong interaction between the proton and the lambda in a given pair, to the
measured data a value for the effective source size is deduced. Assuming a
static Gaussian source distribution we derive an effective radius parameter of
R_G = 3.02 \pm 0.20$(stat.)^{+0.44}_{-0.16}(syst.) fm.Comment: 14 pages, 9 figures, submitted to Phys. Rev.
- …
