470 research outputs found

    Simple Muscle Architecture Analysis (SMA): an ImageJ macro tool to automate measurements in B-mode ultrasound scans

    Get PDF
    In vivo measurements of muscle architecture (i.e. the spatial arrangement of muscle fascicles) are routinely included in research and clinical settings to monitor muscle structure, function and plasticity. However, in most cases such measurements are performed manually, and more reliable and time-efficient automated methods are either lacking completely, or are inaccessible to those without expertise in image analysis. In this work, we propose an ImageJ script to automate the entire analysis process of muscle architecture in ultrasound images: Simple Muscle Architecture Analysis (SMA). Images are filtered in the spatial and frequency domains with built-in commands and external plugins to highlight aponeuroses and fascicles. Fascicle dominant orientation is then computed in regions of interest using the OrientationJ plugin. Bland-Altman plots of analyses performed manually or with SMA indicates that the automated analysis does not induce any systematic bias and that both methods agree equally through the range of measurements. Our test results illustrate the suitability of SMA to analyse images from superficial muscles acquired with a broad range of ultrasound settings.Comment: 8 pages, 7 figures, 1 appendi

    Tendinous tissue adaptation to explosive-vs. sustained-contraction strength training

    Get PDF
    The effect of different strength training regimes, and in particular training utilizing brief explosive contractions, on tendinous tissue properties is poorly understood. This study compared the efficacy of 12 weeks of knee extensor explosive-contraction (ECT; n = 14) vs. sustained-contraction (SCT; n = 15) strength training vs. a non-training control (n = 13) to induce changes in patellar tendon and knee extensor tendon-aponeurosis stiffness and size (patellar tendon, vastus-lateralis aponeurosis, quadriceps femoris muscle) in healthy young men. Training involved 40 isometric knee extension contractions (3 times/week): gradually increasing to 75% of maximum voluntary torque (MVT) before holding for 3 s (SCT), or briefly contracting as fast as possible to ~80% maximum voluntary torque (ECT). Changes in patellar tendon stiffness and Young’s modulus, tendon-aponeurosis complex stiffness, as well as quadriceps femoris muscle volume, vastus-lateralis aponeurosis area and patellar tendon cross-sectional area were quantified with ultrasonography, dynamometry, and magnetic resonance imaging. ECT and SCT similarly increased patellar tendon stiffness (20% vs. 16%, both p < 0.05 vs. control) and Young’s modulus (22% vs. 16%, both p < 0.05 vs. control). Tendon-aponeurosis complex high-force stiffness increased only after SCT (21%; p <0.02), while ECT resulted in greater overall elongation of the tendon-aponeurosis complex. Quadriceps muscle volume only increased after sustained-contraction training (8%; p = 0.001), with unclear effects of strength training on aponeurosis area. The changes in patellar tendon cross-sectional area after strength training were not appreciably different to control. Our results suggest brief high force muscle contractions can induce increased free tendon stiffness, though SCT is needed to increase tendon-aponeurosis complex stiffness and muscle hypertrophy

    Whole-body vibration training induces hypertrophy of the human patellar tendon

    Get PDF
    I Brage finner du siste tekst-versjon av artikkelen, og den kan inneholde ubetydelige forskjeller fra forlagets pdf-versjon. Forlagets pdf-versjon finner du på onlinelibrary.wiley.com / In Brage you'll find the final text version of the article, and it may contain insignificant differences from the journal's pdf version. The definitive version is available at onlinelibrary.wiley.comAnimal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque–angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque–angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans.Seksjon for fysisk prestasjonsevne / Department of Physical Performanc

    Muscle thickness correlates to muscle cross sectional area in the assessment of strength training induced hypertrophy

    Get PDF
    Aim: Muscle thickness (MT) measured by ultrasound has been used to estimate cross-sectional area (measured by CT and MRI) at a single time-point. We tested whether MT could be used as a valid marker of MRI determined muscle anatomical cross-sectional area (ACSA) and volume changes following resistance training (RT). Methods: Nine healthy, young, male volunteers (24±2 y.o., BMI 24.1±2.8 kg/m2) had vastus lateralis (VL) muscle volume (VOL) and ACSA mid (at 50% of femur length, FL) assessed by MRI, and VL MT measured by ultrasound at 50% FL. Measurements were taken at baseline and after 12 weeks of isokinetic RT. Differences between baseline and post-training were assessed by Student’s paired t-test. The relationships between MRI and ultrasound measurements were tested by Pearson’s correlation. Results: After RT, MT increased by 7.5±6.1% (p0.05). Conclusions: These data support evidence that MT is a reliable index of muscle ACSAmid and VOL at a single time-point. MT changes following RT are associated with parallel changes in muscle ACSAmid but not with the changes in VOL, highlighting the impact of RT on regional hypertrophy

    Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise.

    Get PDF
    By virtue of their anatomical location between muscles and bones, tendons make it possible to transform contractile force to joint rotation and locomotion. However, tendons do not behave as rigid links, but exhibit viscoelastic tensile properties, thereby affecting the length and contractile force in the in-series muscle, but also storing and releasing elastic stain energy as some tendons are stretched and recoiled in a cyclic manner during locomotion. In the late 90s, advancements were made in the application of ultrasound scanning that allowed quantifying the tensile deformability and mechanical properties of human tendons in vivo. Since then, the main principles of the ultrasound-based method have been applied by numerous research groups throughout the world and showed that tendons increase their tensile stiffness in response to exercise training and chronic mechanical loading, in general, by increasing their size and improving their intrinsic material. It is often assumed that these changes occur homogenously, in the entire body of the tendon, but recent findings indicate that the adaptations may in fact take place in some but not all tendon regions. The present review focuses on these regional adaptability features and highlights two paradigms where they are particularly evident: (a) Chronic mechanical loading in healthy tendons, and (b) tendinopathy. In the former loading paradigm, local tendon adaptations indicate that certain regions may "see," and therefore adapt to, increased levels of stress. In the latter paradigm, local pathological features indicate that certain tendon regions may be "stress-shielded" and degenerate over time. Eccentric exercise protocols have successfully been used in the management of tendinopathy, without much sound understanding of the mechanisms underpinning their effectiveness. For insertional tendinopathy, in particular, it is possible that the effectiveness of a loading/rehabilitation protocol depends on the topography of the stress created by the exercise and is not only reliant upon the type of muscle contraction performed. To better understand the micromechanical behavior and regional adaptability/mal-adaptability of tendon tissue it is important to estimate its internal stress-strain fields. Recent relevant advancements in numerical techniques related to tendon loading are discussed

    The Achilles tendon is mechanosensitive in older adults: adaptations following 14 weeks versus 1.5 years of cyclic strain exercise.

    Get PDF
    The aging musculoskeletal system experiences a general decline in structure and function, characterized by a reduced adaptability to environmental stress. We investigated whether the older human Achilles tendon (AT) demonstrates mechanosensitivity (via biomechanical and morphological adaptations) in response to long-term mechanical loading. Thirty-four female adults (60-75 years) were allocated to either a medium-term (14 weeks; N=21) high AT strain cyclic loading exercise intervention or a control group (N=13), with 12 participants continuing with the intervention for 1.5 years. AT biomechanical properties were assessed using ultrasonography and dynamometry. Tendon cross-sectional area (CSA) was investigated by means of magnetic resonance imaging. A 22% exercise-related increment in ankle plantarflexion joint moment, along with increased AT stiffness (598.2±141.2 versus 488.4±136.9 N mm(-1) at baseline), Young's modulus (1.63±0.46 versus 1.37±0.39 GPa at baseline) and about 6% hypertrophy along the entire free AT were identified after 14 weeks of strength training, with no further improvement after 1.5 years of intervention. The aging AT appears to be capable of increasing its stiffness in response to 14 weeks of mechanical loading exercise by changing both its material and dimensional properties. Continuing exercise seems to maintain, but not cause further adaptive changes in tendons, suggesting that the adaptive time-response relationship of aging tendons subjected to mechanical loading is nonlinear

    Effect of increased running speed and weight carriage on peak and cumulative tibial loading

    Get PDF
    I Brage finner du siste tekst-versjon av artikkelen, og den kan inneholde ubetydelige forskjeller fra forlagets pdf-versjon. Forlagets pdf-versjon finner du på wiley.com / In Brage you'll find the final text version of the article, and it may contain insignificant differences from the journal's pdf version. The definitive version is available at wiley.com.Introduction: Tibial stress injuries are a burdensome injury among military recruits. Military activities include running and the carriage of additional weight, and this may be related to the high risk of bone stress injuries. The aim of this study was to quantify tibial loading when running at two different speeds, with and without additional weight, and to quantify their combined influence. Methods: Fourteen male distance runners who ran at least 40 km per week ran barefoot on a force-instrumented treadmill in four conditions representing preferred running speed (mean (SD) 3.1 (0.3) m/s) and 20% increased running speed (3.8 (0.4) m/s), with and without 20% of body weight carried in a weight vest. Kinematics and kinetics were synchronously collected. Bending moments were estimated about the medial-lateral axis of the tibial centroid located 1/3rd of the length from distal to proximal. Static equilibrium was ensured at each 1% of stance. Peak bending moments were obtained in addition to cumulative-weighted loading, where weighted loading accounted for the relative importance of the magnitude of the bending moment and the quantity of loading using a bone-dependent weighting factor. Results: There were no interaction effects for running speed and weight carriage on peak or cumulative tibial loading. Running at a 20% faster speed increased peak and cumulative loading per kilometer by 8.0% (p < 0.001) and 4.8% (p < 0.001), respectively. Carriage of an additional 20% of body weight increased peak and cumulative loading per kilometer by 6.6% (p < 0.001) and 8.5% (p < 0.001), respectively. Interpretation: Increasing the physical demand of running by increasing speed or weight carriage increased peak tibial loading and cumulative tibial loading per kilometer, and this may increase the risk of tibial stress injury. Running speed and weight carriage independently influenced tibial loading.acceptedVersionInstitutt for fysisk prestasjonsevne / Department of Physical Performanc

    DL_Track_US: A python package to analyse muscle ultrasonography images

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Ultrasonography can be used to assess muscle architectural parameters during static and dynamic conditions. Nevertheless, the analysis of the acquired ultrasonography images presents a major difficulty. Muscle architectural parameters such as muscle thickness, fascicle length and pennation angle are mainly segmented manually. Manual analysis is time expensive, subjective and requires thorough expertise. Within recent years, several algorithms were developed to solve these issues. Yet, these are only partly automated, are not openly available, or lack in user friendliness. The DL_Track_US python package is designed to allow fully automated and rapid analysis of muscle architectural parameters in lower limb ultrasonography images.publishedVersionInstitutt for fysisk prestasjonsevne / Department of Physical Performanc
    corecore