739 research outputs found

    QED theory of the nuclear recoil effect in atoms

    Get PDF
    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.Comment: 20 pages, 6 figures, Late

    Interelectronic-interaction effect on the transition probability in high-Z He-like ions

    Full text link
    The interelectronic-interaction effect on the transition probabilities in high-Z He-like ions is investigated within a systematic quantum electrodynamic approach. The calculation formulas for the interelectronic-interaction corrections of first order in 1/Z are derived using the two-time Green function method. These formulas are employed for numerical evaluations of the magnetic transition probabilities in heliumlike ions. The results of the calculations are compared with experimental values and previous calculations

    Virial relations for the Dirac equation and their applications to calculations of H-like atoms

    Get PDF
    Virial relations for the Dirac equation in a central field and their applications to calculations of H-like atoms are considered. It is demonstrated that using these relations allows one to evaluate various average values for a hydrogenlike atom. The corresponding relations for non-diagonal matrix elements provide an effective method for analytical evaluations of infinite sums that occur in calculations based on using the reduced Coulomb-Green function. In particular, this method can be used for calculations of higher-order corrections to the hyperfine splitting and to the g factor in hydrogenlike atoms.Comment: Invited talk at PSAS 2002, St.Petersburg; 19 pages, 1 figur

    QED theory of the nuclear recoil effect on the atomic g factor

    Full text link
    The quantum electrodynamic theory of the nuclear recoil effect on the atomic g factor to all orders in \alpha Z and to first order in m/M is formulated. The complete \alpha Z-dependence formula for the recoil correction to the bound-electron g factor in a hydrogenlike atom is derived. This formula is used to calculate the recoil correction to the bound-electron g factor in the order (\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page

    Two-loop self-energy contribution to the Lamb shift in H-like ions

    Full text link
    The two-loop self-energy correction is evaluated to all orders in Z\alpha for the ground-state Lamb shift of H-like ions with Z >= 10, where Z is the nuclear charge number and \alpha is the fine structure constant. The results obtained are compared with the analytical values for the Z\alpha-expansion coefficients. An extrapolation of the all-order numerical results to Z=1 is presented and implications of our calculation for the hydrogen Lamb shift are discussed

    Mathematical Structure of Relativistic Coulomb Integrals

    Full text link
    We show that the diagonal matrix elements ,, where OO =1,β,iαnβ={1,\beta,i\mathbf{\alpha n}\beta} are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, may be considered as difference analogs of the radial wave functions. Such structure provides an independent way of obtaining closed forms of these matrix elements by elementary methods of the theory of difference equations without explicit evaluation of the integrals. Three-term recurrence relations for each of these expectation values are derived as a by-product. Transformation formulas for the corresponding generalized hypergeometric series are discussed.Comment: 13 pages, no figure
    corecore